Nurses work within a multidimensional scope of practice, which includes a reactive approach of treating health problems, a proactive stance of health promotion, and disease prevention. The purpose of this paper is to ...Nurses work within a multidimensional scope of practice, which includes a reactive approach of treating health problems, a proactive stance of health promotion, and disease prevention. The purpose of this paper is to discuss the contribution of the intersectionality framework in building nursing knowledge related to the PMTCT of HIV and show how the intersectionality framework can contribute to the improvement of nursing practice, policy, and research related to PMTCT of HIV. A comprehensive literature review was conducted to be able to discuss the contribution of intersectionality framework in nursing knowledge. Intersectionality is a nice perspective that gives insight into different identities that link and work together to provide inequalities. Intersectionality is a well-suited approach in a nursing profession where we strive to offer efficient and better care to our patients or clients;an excellent tool to explore more on the roots of inequality, oppression, and discrimination.展开更多
In this article,Mocombe highlights what he calls the pathological-pathogenic purposive-rationalities(liberalism,nihilism,conservatism,postmodernism,intersectionality/identity politics,and secular humanism)that emerge ...In this article,Mocombe highlights what he calls the pathological-pathogenic purposive-rationalities(liberalism,nihilism,conservatism,postmodernism,intersectionality/identity politics,and secular humanism)that emerge out of modernity as constituted by the West under American hegemony.In the place of these pathological-pathogenic responses to the vagaries of modernity,Mocombe calls for an antihumanism,associated with what he calls libertarian communism,as a panacea to the aforementioned malaises.展开更多
In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utili...In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.展开更多
Background: Wrist pain is prevalent. Activities such as dexterous sports, prolonged use of personal handheld devices, and extensive desktop keyboard usage are common contributors to wrist pain. Intersection syndrome, ...Background: Wrist pain is prevalent. Activities such as dexterous sports, prolonged use of personal handheld devices, and extensive desktop keyboard usage are common contributors to wrist pain. Intersection syndrome, a form of inflammatory tenosynovitis, occurs at the intersection of the first and second dorsal compartments of the wrist. The first dorsal compartment is comprised of the tendons of abductor pollicis longus and extensor pollicis brevis, while the second dorsal compartment contains the tendons of extensor carpi radialis longus and extensor carpi radialis brevis. Intersection syndrome is diagnosed by pain localized to the dorsoradial forearm, approximately five cm proximal to the wrist joint, which worsens with resisted wrist and thumb extension. To date, the use of hydro dissection with 5% dextrose under ultrasound guidance as a treatment for Intersection syndrome has not been reported. This case report presents the first report on ultrasound-guided hydro dissection as a therapeutic approach for intersection syndrome. Methods: A case report, with informed consent, involving a 32-year-old male athlete. The patient, a hurling player, presented with chronic right wrist pain diagnosed as intersection syndrome. The condition significantly affected his work, sporting activities, and daily living activities. Previous conservative management and physiotherapy had failed to alleviate his symptoms. To confirm the diagnosis, relevant imaging was performed, supplemented by dynamic ultrasound assessment. The procedure was performed aseptically. Continuous ultrasound guidance was employed to ensure accurate needle placement. Once the needle tip position was confirmed, an initial injection of 5 mL of 0.25% chirocaine was administered. 10 mL of 5% dextrose was injected under ultrasound guidance for hydro dissection, with good visualization of the solution’s distribution. Conclusion: Ultrasound-guided hydro dissection has not previously been documented as a treatment option for intersection syndrome. In this case, it proved to be an effective pain-relieving therapy with sustained effect at three-month clinical follow-up. Further studies are required.展开更多
Introduction Gender and sex are related to important quality and safety issues in scientific,health,and clinical research.Sex refers to biological characteristics,while gender encompasses the sociocultural norms,ident...Introduction Gender and sex are related to important quality and safety issues in scientific,health,and clinical research.Sex refers to biological characteristics,while gender encompasses the sociocultural norms,identities,and relationships that shape communities and organizations,as well as influence actions,behaviors,contexts,and knowledge.Both gender and sex intersect with other social categories.In this context,in addition to sex or gender,the intersectionality refers to overlapping or interdependent systems of discrimination by more than one factor,such as age,disability,ethnicity,geographic location,socioeconomic status,and sexuality,among others.展开更多
Eco-driving has always been an ongoing topic.In urban driving conditions,traffic regulations,other vehicle behaviors,and special driving scenarios will have a major impact on the energy consumption of autonomous vehic...Eco-driving has always been an ongoing topic.In urban driving conditions,traffic regulations,other vehicle behaviors,and special driving scenarios will have a major impact on the energy consumption of autonomous vehicles.As a representative algorithm of artificial intelligence,reinforcement learning has the ability to perform well under complex tasks.This paper uses deep reinforcement learning algorithms to design the economical driving strategies of autonomous vehicles in three driving scenarios:driving at signalized intersection under free traffic flow,car-following on ramps,and driving at signalized intersection considering queue effects.In the above three driving scenarios,the driving strategy proposed in this paper achieves economical driving performance while satisfying the driving scenario requirements.展开更多
In the next few years traffic will happen most of the time.This was triggered by the growing rate of vehicles against the road capacity which is not balance.All the time the congestion in the city of Semarang has occu...In the next few years traffic will happen most of the time.This was triggered by the growing rate of vehicles against the road capacity which is not balance.All the time the congestion in the city of Semarang has occured at peak hours.Congestion also occured in between Teuku Umar and Setia Budi road Jatingaleh because of a plot intersection(Kesatrian intersection,PLN intersection and Jatingaleh intersection)with the Toll Road.Jatingaleh is located in the southern city of Semarang which is a central meeting point between the upper and lower Semarang where the vehicle flows in through a combination of local current and regional traffic,and the flow of vehicles coming in and out from highway.The main cause of the problems that occurred in the area of Jatingaleh is due to the numbers of vehicles movement that occurs at the intersections.With the above issues,it is necessary to analyse the existing conditions and look into some solutions.Before carrying out an analysis a field surveys at peak hours for example morning(06:00 to 08:00 am)and for the afternoon(04:00 to 06:00 pm)should be conducted,then the number of vehicles is counted manually with“short-breakcounting”according to types of vehicles.From the analysis we found that the degree of saturation(DS)is 1.61 between Teuku Umar and Setia Budi road during the morning peak hours and 1.56 during the afternoon peak hours.This means that the capacity of the existing road is no longer able to accommodate the traffic flow.One of the solutions for the congestion that occurs at the intersection of Jatingaleh is to apply the efficiency of the intersection that is not in a plot with a Fly over,Underpass and the combination of Fly Over-Underpass.Base on the flow reduction calculation with 3 comparative modeling it shows that the Fly Over is the most technically efficient to be applied in this research.展开更多
The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t...The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.展开更多
We constructed a new set of diabatic poten-tial energy surfaces(PESs)for the two low-est states involved in Li+Li_(2)reaction by us-ing the fundamental-invariant neural net-work method.The Li_(3)system exhibits a coni...We constructed a new set of diabatic poten-tial energy surfaces(PESs)for the two low-est states involved in Li+Li_(2)reaction by us-ing the fundamental-invariant neural net-work method.The Li_(3)system exhibits a coni-cal intersection(CI)at the geometric D_(3)h symmetries with the energy of the CI point significantly lower than the ground-state en-ab initio ergy of the diatomic molecule.The diabaitc PESs accurately reproduce adiabatic en-ergies,derivative coupling,and energy gradient information,thereby providing a high-fideli-ty description of the CI between the two lowest electronic states.Quantum dynamical calcu-lations have revealed significant non-adiabatic effects in the Li+Li_(2)reaction.展开更多
Laser-directed energy deposition(L-DED)is an advanced additive manufacturing technology primarily adopted in metal three-dimensional printing systems.The L-DED process is characterized by various defects,thus necessit...Laser-directed energy deposition(L-DED)is an advanced additive manufacturing technology primarily adopted in metal three-dimensional printing systems.The L-DED process is characterized by various defects,thus necessitating the extensive use of in-situ monitoring to enable real-time adjustments of process parameters by detecting molten-pool features.To address the challenge of accurately extracting the molten-pool morphology from an undetached spatter,an innovative monitoring method based on the U-Net(U-shaped network)is proposed herein.A lightweight architecture accelerates the processing speed,whereas an enhanced loss function incorporating weight maps augments the segmentation precision.The model performance is evaluated by comparing its segmentation accuracy and processing speed with those of the conventional U-Net,using the mean intersection over union(MIoU)as the segmentation metric.The improved model demonstrates superior segmentation accuracy at the interface between the molten pool and spatter,with a peak MIoU of 0.9798 achieved on the test set.Furthermore,this model processes each image in an extremely short time of 17.9 ms.Using this segmentation algorithm,the error in extracting the molten-pool width from single-track experiments is within 0.1 mm.The proposed method for monitoring the molten-pool morphology is suitable for deployment in online monitoring systems,thus providing a foundation for subsequent process-parameter regulation.展开更多
A new two-state diabatic potential energy matrix(DPEM)for H3 has been constructed,based on the fun-damental invariant neural network(FI-NN)diabatization method pro-posed in our previous work[Phys.Chem.Chem.Phys.21,150...A new two-state diabatic potential energy matrix(DPEM)for H3 has been constructed,based on the fun-damental invariant neural network(FI-NN)diabatization method pro-posed in our previous work[Phys.Chem.Chem.Phys.21,15040(2019)].In that initial effort,a two-state DPEM was constructed only with a 10 eV energy threshold.The current work aims to expand the en-ergy range and improve the accura-cy of DPEM.This is achieved by the utilization of full configuration inter-action(FCI)with aug-cc-pVnZ ba-sis sets and complete basis set(CBS)extrapolation.The original dataset is augmented with additional points with higher adiabatic energies,which give rise to a total of 10985 data points.The DPEM constructed in this work now enables accurate representation of adiabatic energies up to 18 eV.Quantum dynamic calculations based on this DPEM are nearly identical to those obtained from benchmark surfaces,which makes it the most accurate DPEM for the H3 system to date,therefore facilitating detailed exploration of reaction mechanisms at higher collision energies.展开更多
In this paper,we introduce the normalized L,mixed intersection body and demonstrate how the normalized L_(p) mixed intersection body operator can be used to obtain the polar body operator as a limit.Moreover,we study ...In this paper,we introduce the normalized L,mixed intersection body and demonstrate how the normalized L_(p) mixed intersection body operator can be used to obtain the polar body operator as a limit.Moreover,we study the L_(p)-Busemann-Petty type problem for the normalized L_(p) mixed intersection bodies.展开更多
Dynamic recrystallization(DRX)is of great significance for the thermomechanical processing and microstructural regulation of TiAl intermetallics.However,the underlying DRX mechanism remains poorly understood.In this s...Dynamic recrystallization(DRX)is of great significance for the thermomechanical processing and microstructural regulation of TiAl intermetallics.However,the underlying DRX mechanism remains poorly understood.In this study,an Avrami kinetics model for DRX was established,which was capable of predicting the DRX fraction accurately.In addition,the effect of Al_(2)O_(3)short fiber on the DRX mechanisms of TiAl matrix composite during the isothermal compression was investigated for the first time.The re-sults showed that other than inhibiting DRX by particles in the TiAl matrix composites,the addition of Al_(2)O_(3)short fiber accelerated a novel DRX process,which was induced by twinning and twin intersec-tions(TDRX).Thus,this composite exhibited a higher DRX rate than that of the as-cast TiAl monolithic alloy.The origin of the twin intersection and TDRX for the composite was revealed.The stress concentration near the Al_(2)O_(3)fiber was above the critical shear stress for twinning and thus was favorable for the formation of twinning and twin intersections.The high stored strain energy at the regions of twins and twin intersections provided the driving force for TDRX.TDRX accelerated the grain refinement in the TiAl matrix near the Al_(2)O_(3)fiber.The present findings would provide a new perspective on DRX mechanisms,and provide the scientific guidance for optimizing the microstructures of TiAl matrix composites.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
This paper investigates the problem of decentralized multi-robot cooperative localization.This problem involves collaboratively estimating the poses of a group of robots with respect to a common reference coordinate s...This paper investigates the problem of decentralized multi-robot cooperative localization.This problem involves collaboratively estimating the poses of a group of robots with respect to a common reference coordinate system using robot-to-robot relative measurements and intermittent absolute measurements in a distributed manner.To address this problem,we present a decentralized fusion method that enables batch updating to handle relative measurements from multiple robots simultaneously.This method can improve both the accuracy and computational efficiency of cooperative localization.To reduce communication costs and reliance on connectivity,we do not maintain the inter-robot state correlations.Instead,we adopt a covariance intersection(CI)technique to design an upper bound that replaces unknown joint correlations.We propose an optimization method to determine a tight upper bound for the correlations in the joint update.The consistency and convergence of our proposed algorithm is theoretically analyzed.Furthermore,we conduct Monte Carlo numerical simulations and real-world experiments to demonstrate that the proposed method outperforms existing approaches in terms of both accuracy and consistency.展开更多
The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the gro...The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the growth,interaction,as well as linkage of new fault segments.This study analyses a complex multi-phase oblique extension fault system in the Nanpu Sag(NPS)of the Bohai Bay Basin(BBB),China.High-resolution three-dimensional(3D)seismic data and analogue modelling indicate that the oblique extensional reactivation of pre-existing structures governs the sequential arrangement of fault segments in the caprock,and they dip synthetically to the reactivated fault at depth.During the NW-SE extension in the Eocene,the predominant movement of the pre-existing fault is strike-slip.Subsequently,during the N-S extension since the Oligocene,inclined at 20.to the pre-existing fault,forming splay fault segments and ultimately creating large en-echelon arcuate faults linked by relay ramps.Using fault throw-distance(T-D)and laser scanning,we reconstructed the fault evolution model of oblique extension reactivation in the presence of a ductile detachment basement.Our study illustrates that the arcuate faults can be categorized into linear master fault segments controlled by pre-existing structures,bending splay faults in the termination zone,and normal fault segments responding to the regional stress field.The interaction between faults occurs among normal faults and strike-slip faults,and the kinematic unification of the two fault systems is accomplished in the intersection zone.As the faults continue to evolve,the new fault segments tend to relinquish the control of pre-existing structures and concentrate more on the development of planar and continuous major faults.The ductile detachment layer significantly contributes to the uniform distribution of strain,resulting in narrow shear zones and discontinuous normal faults in its absence.展开更多
This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of elect...This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of electron backscattered diffraction investigations showed that the activated twins were primarily{1012}tension twins,and 60°<1010>boundaries formed due to twin–twin intersections under different strain rates.Isolated twin variants with 60°<1010>boundaries transformed into new grains through lattice rotations at a low strain rate(0.01 s^(−1)).At a high strain rate(10 s^(−1)),the regions surrounded by subgrain boundaries through high-density dislocation arrangement and the 60°<1010>boundaries transformed into new grains via dynamic recrystallization.展开更多
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
The rapid pace of urban development has resulted in the widespread presence of construction equipment andincreasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safeope...The rapid pace of urban development has resulted in the widespread presence of construction equipment andincreasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safeoperation of the power grid.Machine vision technology, particularly object recognition technology, has beenwidelyemployed to identify foreign objects in transmission line images. Despite its wide application, the technique faceslimitations due to the complex environmental background and other auxiliary factors. To address these challenges,this study introduces an improved YOLOv8n. The traditional stepwise convolution and pooling layers are replacedwith a spatial-depth convolution (SPD-Conv) module, aiming to improve the algorithm’s efficacy in recognizinglow-resolution and small-size objects. The algorithm’s feature extraction network is improved by using a LargeSelective Kernel (LSK) attention mechanism, which enhances the ability to extract relevant features. Additionally,the SIoU Loss function is used instead of the Complete Intersection over Union (CIoU) Loss to facilitate fasterconvergence of the algorithm. Through experimental verification, the improved YOLOv8n model achieves adetection accuracy of 88.8% on the test set. The recognition accuracy of cranes is improved by 2.9%, which isa significant enhancement compared to the unimproved algorithm. This improvement effectively enhances theaccuracy of recognizing foreign objects on transmission lines and proves the effectiveness of the new algorithm.展开更多
The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of t...The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately.展开更多
文摘Nurses work within a multidimensional scope of practice, which includes a reactive approach of treating health problems, a proactive stance of health promotion, and disease prevention. The purpose of this paper is to discuss the contribution of the intersectionality framework in building nursing knowledge related to the PMTCT of HIV and show how the intersectionality framework can contribute to the improvement of nursing practice, policy, and research related to PMTCT of HIV. A comprehensive literature review was conducted to be able to discuss the contribution of intersectionality framework in nursing knowledge. Intersectionality is a nice perspective that gives insight into different identities that link and work together to provide inequalities. Intersectionality is a well-suited approach in a nursing profession where we strive to offer efficient and better care to our patients or clients;an excellent tool to explore more on the roots of inequality, oppression, and discrimination.
文摘In this article,Mocombe highlights what he calls the pathological-pathogenic purposive-rationalities(liberalism,nihilism,conservatism,postmodernism,intersectionality/identity politics,and secular humanism)that emerge out of modernity as constituted by the West under American hegemony.In the place of these pathological-pathogenic responses to the vagaries of modernity,Mocombe calls for an antihumanism,associated with what he calls libertarian communism,as a panacea to the aforementioned malaises.
基金supported in part by the National Natural Science Foundation of China(12171124,61933007)the Natural Science Foundation of Heilongjiang Province of China(ZD2022F003)+2 种基金the National High-End Foreign Experts Recruitment Plan of China(G2023012004L)the Royal Society of UKthe Alexander von Humboldt Foundation of Germany
文摘In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.
文摘Background: Wrist pain is prevalent. Activities such as dexterous sports, prolonged use of personal handheld devices, and extensive desktop keyboard usage are common contributors to wrist pain. Intersection syndrome, a form of inflammatory tenosynovitis, occurs at the intersection of the first and second dorsal compartments of the wrist. The first dorsal compartment is comprised of the tendons of abductor pollicis longus and extensor pollicis brevis, while the second dorsal compartment contains the tendons of extensor carpi radialis longus and extensor carpi radialis brevis. Intersection syndrome is diagnosed by pain localized to the dorsoradial forearm, approximately five cm proximal to the wrist joint, which worsens with resisted wrist and thumb extension. To date, the use of hydro dissection with 5% dextrose under ultrasound guidance as a treatment for Intersection syndrome has not been reported. This case report presents the first report on ultrasound-guided hydro dissection as a therapeutic approach for intersection syndrome. Methods: A case report, with informed consent, involving a 32-year-old male athlete. The patient, a hurling player, presented with chronic right wrist pain diagnosed as intersection syndrome. The condition significantly affected his work, sporting activities, and daily living activities. Previous conservative management and physiotherapy had failed to alleviate his symptoms. To confirm the diagnosis, relevant imaging was performed, supplemented by dynamic ultrasound assessment. The procedure was performed aseptically. Continuous ultrasound guidance was employed to ensure accurate needle placement. Once the needle tip position was confirmed, an initial injection of 5 mL of 0.25% chirocaine was administered. 10 mL of 5% dextrose was injected under ultrasound guidance for hydro dissection, with good visualization of the solution’s distribution. Conclusion: Ultrasound-guided hydro dissection has not previously been documented as a treatment option for intersection syndrome. In this case, it proved to be an effective pain-relieving therapy with sustained effect at three-month clinical follow-up. Further studies are required.
基金funded by the European Union's Horizon 2020 Research and Innovation Programme under grant No.896932(TTV guide TX project)and grant No.824087(EOSC-Life)。
文摘Introduction Gender and sex are related to important quality and safety issues in scientific,health,and clinical research.Sex refers to biological characteristics,while gender encompasses the sociocultural norms,identities,and relationships that shape communities and organizations,as well as influence actions,behaviors,contexts,and knowledge.Both gender and sex intersect with other social categories.In this context,in addition to sex or gender,the intersectionality refers to overlapping or interdependent systems of discrimination by more than one factor,such as age,disability,ethnicity,geographic location,socioeconomic status,and sexuality,among others.
基金supported in part by the National Natural Science Foundation of China under Grant No.62073152in part by the Jilin Province Science and Technology Development Plan,China under Grant No.20220201034GX.
文摘Eco-driving has always been an ongoing topic.In urban driving conditions,traffic regulations,other vehicle behaviors,and special driving scenarios will have a major impact on the energy consumption of autonomous vehicles.As a representative algorithm of artificial intelligence,reinforcement learning has the ability to perform well under complex tasks.This paper uses deep reinforcement learning algorithms to design the economical driving strategies of autonomous vehicles in three driving scenarios:driving at signalized intersection under free traffic flow,car-following on ramps,and driving at signalized intersection considering queue effects.In the above three driving scenarios,the driving strategy proposed in this paper achieves economical driving performance while satisfying the driving scenario requirements.
文摘In the next few years traffic will happen most of the time.This was triggered by the growing rate of vehicles against the road capacity which is not balance.All the time the congestion in the city of Semarang has occured at peak hours.Congestion also occured in between Teuku Umar and Setia Budi road Jatingaleh because of a plot intersection(Kesatrian intersection,PLN intersection and Jatingaleh intersection)with the Toll Road.Jatingaleh is located in the southern city of Semarang which is a central meeting point between the upper and lower Semarang where the vehicle flows in through a combination of local current and regional traffic,and the flow of vehicles coming in and out from highway.The main cause of the problems that occurred in the area of Jatingaleh is due to the numbers of vehicles movement that occurs at the intersections.With the above issues,it is necessary to analyse the existing conditions and look into some solutions.Before carrying out an analysis a field surveys at peak hours for example morning(06:00 to 08:00 am)and for the afternoon(04:00 to 06:00 pm)should be conducted,then the number of vehicles is counted manually with“short-breakcounting”according to types of vehicles.From the analysis we found that the degree of saturation(DS)is 1.61 between Teuku Umar and Setia Budi road during the morning peak hours and 1.56 during the afternoon peak hours.This means that the capacity of the existing road is no longer able to accommodate the traffic flow.One of the solutions for the congestion that occurs at the intersection of Jatingaleh is to apply the efficiency of the intersection that is not in a plot with a Fly over,Underpass and the combination of Fly Over-Underpass.Base on the flow reduction calculation with 3 comparative modeling it shows that the Fly Over is the most technically efficient to be applied in this research.
基金Project(52204164)supported by the National Natural Science Foundation of ChinaProject(2021QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.
基金supported by the National Natural Science Foundation of China(Nos.22103084 and 22233003 to Jiayu Huang,and No.22288201 to Dong H.Zhang)the Innovation Program for Quantum Science and Technology(No.2021ZD0303305)to Dong H.Zhangthe Dalian Innovation Support Program(No.2021RD05)to Dong H.Zhang.
文摘We constructed a new set of diabatic poten-tial energy surfaces(PESs)for the two low-est states involved in Li+Li_(2)reaction by us-ing the fundamental-invariant neural net-work method.The Li_(3)system exhibits a coni-cal intersection(CI)at the geometric D_(3)h symmetries with the energy of the CI point significantly lower than the ground-state en-ab initio ergy of the diatomic molecule.The diabaitc PESs accurately reproduce adiabatic en-ergies,derivative coupling,and energy gradient information,thereby providing a high-fideli-ty description of the CI between the two lowest electronic states.Quantum dynamical calcu-lations have revealed significant non-adiabatic effects in the Li+Li_(2)reaction.
基金supported by National Natural Science Foundation of China(Grant Nos.52305440,52204263)Natural Science Foundation of Changsha City(Grant Nos.kq2208272,kq2208274)+1 种基金Tribology Science Fund of the State Key Laboratory of Tribology in Advanced Equipment(Grant SKLTKF22B09)National Key Research and Development Program of China(2022YFB3706902).
文摘Laser-directed energy deposition(L-DED)is an advanced additive manufacturing technology primarily adopted in metal three-dimensional printing systems.The L-DED process is characterized by various defects,thus necessitating the extensive use of in-situ monitoring to enable real-time adjustments of process parameters by detecting molten-pool features.To address the challenge of accurately extracting the molten-pool morphology from an undetached spatter,an innovative monitoring method based on the U-Net(U-shaped network)is proposed herein.A lightweight architecture accelerates the processing speed,whereas an enhanced loss function incorporating weight maps augments the segmentation precision.The model performance is evaluated by comparing its segmentation accuracy and processing speed with those of the conventional U-Net,using the mean intersection over union(MIoU)as the segmentation metric.The improved model demonstrates superior segmentation accuracy at the interface between the molten pool and spatter,with a peak MIoU of 0.9798 achieved on the test set.Furthermore,this model processes each image in an extremely short time of 17.9 ms.Using this segmentation algorithm,the error in extracting the molten-pool width from single-track experiments is within 0.1 mm.The proposed method for monitoring the molten-pool morphology is suitable for deployment in online monitoring systems,thus providing a foundation for subsequent process-parameter regulation.
基金supported by the National Natural Science Foundation of China(No.22288201)the Inno-vation Program for Quantum Science and Technology(No.2021ZD0303305)the Dalian Innovation Sup-port Program(No.2021RD05).
文摘A new two-state diabatic potential energy matrix(DPEM)for H3 has been constructed,based on the fun-damental invariant neural network(FI-NN)diabatization method pro-posed in our previous work[Phys.Chem.Chem.Phys.21,15040(2019)].In that initial effort,a two-state DPEM was constructed only with a 10 eV energy threshold.The current work aims to expand the en-ergy range and improve the accura-cy of DPEM.This is achieved by the utilization of full configuration inter-action(FCI)with aug-cc-pVnZ ba-sis sets and complete basis set(CBS)extrapolation.The original dataset is augmented with additional points with higher adiabatic energies,which give rise to a total of 10985 data points.The DPEM constructed in this work now enables accurate representation of adiabatic energies up to 18 eV.Quantum dynamic calculations based on this DPEM are nearly identical to those obtained from benchmark surfaces,which makes it the most accurate DPEM for the H3 system to date,therefore facilitating detailed exploration of reaction mechanisms at higher collision energies.
基金Supported by the Postgraduate Scientific Research Innovation Project of Hunan Province (CX20231033)。
文摘In this paper,we introduce the normalized L,mixed intersection body and demonstrate how the normalized L_(p) mixed intersection body operator can be used to obtain the polar body operator as a limit.Moreover,we study the L_(p)-Busemann-Petty type problem for the normalized L_(p) mixed intersection bodies.
基金the National Science and Technology Major Project(No.2019700160157)the Natural Science Foundation of Hunan Province(No.2021JJ40761)+3 种基金the Central South University Innovation-Driven Research Programmme(No.v2023CXQD030)the Independent Innovation Fund Project Aero Engine Corporation of China(No.CXPT-2021-001)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20230163)the Fundamental Research Funds for the Cen-tral Universities of Central South University(No.2023ZZTS0078)for providing financial support.
文摘Dynamic recrystallization(DRX)is of great significance for the thermomechanical processing and microstructural regulation of TiAl intermetallics.However,the underlying DRX mechanism remains poorly understood.In this study,an Avrami kinetics model for DRX was established,which was capable of predicting the DRX fraction accurately.In addition,the effect of Al_(2)O_(3)short fiber on the DRX mechanisms of TiAl matrix composite during the isothermal compression was investigated for the first time.The re-sults showed that other than inhibiting DRX by particles in the TiAl matrix composites,the addition of Al_(2)O_(3)short fiber accelerated a novel DRX process,which was induced by twinning and twin intersec-tions(TDRX).Thus,this composite exhibited a higher DRX rate than that of the as-cast TiAl monolithic alloy.The origin of the twin intersection and TDRX for the composite was revealed.The stress concentration near the Al_(2)O_(3)fiber was above the critical shear stress for twinning and thus was favorable for the formation of twinning and twin intersections.The high stored strain energy at the regions of twins and twin intersections provided the driving force for TDRX.TDRX accelerated the grain refinement in the TiAl matrix near the Al_(2)O_(3)fiber.The present findings would provide a new perspective on DRX mechanisms,and provide the scientific guidance for optimizing the microstructures of TiAl matrix composites.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
文摘This paper investigates the problem of decentralized multi-robot cooperative localization.This problem involves collaboratively estimating the poses of a group of robots with respect to a common reference coordinate system using robot-to-robot relative measurements and intermittent absolute measurements in a distributed manner.To address this problem,we present a decentralized fusion method that enables batch updating to handle relative measurements from multiple robots simultaneously.This method can improve both the accuracy and computational efficiency of cooperative localization.To reduce communication costs and reliance on connectivity,we do not maintain the inter-robot state correlations.Instead,we adopt a covariance intersection(CI)technique to design an upper bound that replaces unknown joint correlations.We propose an optimization method to determine a tight upper bound for the correlations in the joint update.The consistency and convergence of our proposed algorithm is theoretically analyzed.Furthermore,we conduct Monte Carlo numerical simulations and real-world experiments to demonstrate that the proposed method outperforms existing approaches in terms of both accuracy and consistency.
基金funded by the National Natural Science Foundation of China (grant No.41472116)the Jidong Oil Company of China National Petroleum Corporation (grant No.JDYT-2017-JS-308)the Beijing Research Centre of China National Offshore Oil Company (grant No.CCL2022RCPS2017XNN)。
文摘The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the growth,interaction,as well as linkage of new fault segments.This study analyses a complex multi-phase oblique extension fault system in the Nanpu Sag(NPS)of the Bohai Bay Basin(BBB),China.High-resolution three-dimensional(3D)seismic data and analogue modelling indicate that the oblique extensional reactivation of pre-existing structures governs the sequential arrangement of fault segments in the caprock,and they dip synthetically to the reactivated fault at depth.During the NW-SE extension in the Eocene,the predominant movement of the pre-existing fault is strike-slip.Subsequently,during the N-S extension since the Oligocene,inclined at 20.to the pre-existing fault,forming splay fault segments and ultimately creating large en-echelon arcuate faults linked by relay ramps.Using fault throw-distance(T-D)and laser scanning,we reconstructed the fault evolution model of oblique extension reactivation in the presence of a ductile detachment basement.Our study illustrates that the arcuate faults can be categorized into linear master fault segments controlled by pre-existing structures,bending splay faults in the termination zone,and normal fault segments responding to the regional stress field.The interaction between faults occurs among normal faults and strike-slip faults,and the kinematic unification of the two fault systems is accomplished in the intersection zone.As the faults continue to evolve,the new fault segments tend to relinquish the control of pre-existing structures and concentrate more on the development of planar and continuous major faults.The ductile detachment layer significantly contributes to the uniform distribution of strain,resulting in narrow shear zones and discontinuous normal faults in its absence.
基金support from the Key Technology Research and Development Program of Shandong Province(Project No.2019GGX102060).
文摘This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of electron backscattered diffraction investigations showed that the activated twins were primarily{1012}tension twins,and 60°<1010>boundaries formed due to twin–twin intersections under different strain rates.Isolated twin variants with 60°<1010>boundaries transformed into new grains through lattice rotations at a low strain rate(0.01 s^(−1)).At a high strain rate(10 s^(−1)),the regions surrounded by subgrain boundaries through high-density dislocation arrangement and the 60°<1010>boundaries transformed into new grains via dynamic recrystallization.
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
基金the Natural Science Foundation of Shandong Province(ZR2021QE289)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22201).
文摘The rapid pace of urban development has resulted in the widespread presence of construction equipment andincreasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safeoperation of the power grid.Machine vision technology, particularly object recognition technology, has beenwidelyemployed to identify foreign objects in transmission line images. Despite its wide application, the technique faceslimitations due to the complex environmental background and other auxiliary factors. To address these challenges,this study introduces an improved YOLOv8n. The traditional stepwise convolution and pooling layers are replacedwith a spatial-depth convolution (SPD-Conv) module, aiming to improve the algorithm’s efficacy in recognizinglow-resolution and small-size objects. The algorithm’s feature extraction network is improved by using a LargeSelective Kernel (LSK) attention mechanism, which enhances the ability to extract relevant features. Additionally,the SIoU Loss function is used instead of the Complete Intersection over Union (CIoU) Loss to facilitate fasterconvergence of the algorithm. Through experimental verification, the improved YOLOv8n model achieves adetection accuracy of 88.8% on the test set. The recognition accuracy of cranes is improved by 2.9%, which isa significant enhancement compared to the unimproved algorithm. This improvement effectively enhances theaccuracy of recognizing foreign objects on transmission lines and proves the effectiveness of the new algorithm.
基金supported by Natural Science Foundation of Gansu Province(No.20JR10RA216)。
文摘The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately.