This article proposes an adaptive extended Kalman filter(EKF)for nonlinear cyber-physical systems(CPSs)under unknown inputs and non-Gaussian noises.It is known that the traditional extended Kalman filter is applicable...This article proposes an adaptive extended Kalman filter(EKF)for nonlinear cyber-physical systems(CPSs)under unknown inputs and non-Gaussian noises.It is known that the traditional extended Kalman filter is applicable to nonlinear systems with Gaussian white noise.The system is reformulated with intermediate variables to expand the application of nonlinear systems under unknown inputs and non-Gaussian noises,which help decompose unknown input estimation into residual tracking and state observation subproblems.By introducing the orthogonal principle of innovation and attenuation factor,the intermediate variables-based filter can improve the estimation performance under non-Gaussian noises and unknown inputs.Simulation results validate the effectiveness of the proposed method.展开更多
Hepatocellular carcinoma(HCC)is a high mortality neoplasm which usually appears on a cirrhotic liver.The therapeutic arsenal and subsequent prognostic outlook are intrinsically linked to the HCC stage at diagnosis.Not...Hepatocellular carcinoma(HCC)is a high mortality neoplasm which usually appears on a cirrhotic liver.The therapeutic arsenal and subsequent prognostic outlook are intrinsically linked to the HCC stage at diagnosis.Notwithstanding the current deployment of treatments with curative intent(liver resection/local ablation and liver transplantation)in early and intermediate stages,a high rate of HCC recurrence persists,underscoring a pivotal clinical challenge.Emergent systemic therapies(ST),particularly immunotherapy,have demonstrate promising outcomes in terms of increase overall survival,but they are currently bound to the advanced stage of HCC.This review provides a comprehensive analysis of the literature,encompassing studies up to March 10,2024,evaluating the impact of novel ST in the early and intermediate HCC stages,specially focusing on the findings of neoadjuvant and adjuvant regimens,aimed at increasing significantly overall survival and recurrence-free survival after a treatment with curative intent.We also investigate the potential role of ST in enhancing the downstaging rate for the intermediate-stage HCC initially deemed ineligible for treatment with curative intent.Finally,we critically discuss about the current relevance of the results of these studies and the encouraging future implications of ST in the treatment schedules of early and intermediate HCC stages.展开更多
Metal Sm has been widely used in making Al–Sm magnet alloy materials.Conventional distillation technology to produce Sm has the disadvantages of low productivity,high costs,and pollution generation.The objective of t...Metal Sm has been widely used in making Al–Sm magnet alloy materials.Conventional distillation technology to produce Sm has the disadvantages of low productivity,high costs,and pollution generation.The objective of this study was to develop a molten salt electrolyte system to produce Al–Sm alloy directly,with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption.The continuously varying cell constant(CVCC)technique was used to measure the conductivity for the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3electrolysis medium in the temperature range from 905 to 1055°C.The temperature(t)and the addition of Al2O3(W(Al2O3)),Sm2O3(W(Sm2O3)),and a combination of Al2O3and Sm2O3into the basic fluoride system were examined with respect to their effects on the conductivity(κ)and activation energy.The experimental results showed that the molten electrolyte conductivity increases with increasing temperature(t)and decreases with the addition of Al2O3or Sm2O3or both.We concluded that the optimal operation conditions for Al–Sm intermediate alloy production in the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3system are W(Al2O3)+W(Sm2O3)=3wt%,W(Al2O3):W(Sm2O3)=7:3,and a temperature of 965 to 995°C,which results in satisfactory conductivity,low fluoride evaporation losses,and low energy consumption.展开更多
In this study,a molten salt co-reduction method was proposed for preparing Y-Al intermediate alloys and the electrochemical co-reduction behaviors of Y(Ⅲ)and Al(Ⅲ)and the reaction mechanism of intermetallic compound...In this study,a molten salt co-reduction method was proposed for preparing Y-Al intermediate alloys and the electrochemical co-reduction behaviors of Y(Ⅲ)and Al(Ⅲ)and the reaction mechanism of intermetallic compound formation were investigated by transient electrochemical techniques.The results show that the reduction of Y(Ⅲ)at the Mo electrode is a reversible electrochemical process with a single-step transfer of three electrons,which is controlled by the mass transfer rate.The diffusion coefficient of Y(Ⅲ)in the fluoride salt at a temperature of 1323 K is 5.0238×10^(-3)cm^(2)/s.Moreover,the thermodynamic properties associated with the formation of Y-Al intermetallic compounds were estimated using a steady-state electrochemical method.Y-Al intermediate alloy containing 92 wt%yttrium was prepared by constant current electrolysis at 1323 K in the LiF-YF_(3)-AIF_(3)-Y_(2)O_(3)(6 wt%)-Al_(2)O_(3)(1 wt%)system at a cathodic current density of 8 A/cm^(2)for 2 h.The Y-Al intermediate alloy is mainly composed ofα-Y2Al and Y phases.The development and application of this innovative technology have solved major technical problems,such as a long production process,high energy consumption,and serious segregation of alloy elements at this stage.展开更多
The application of Penman's method of cell fractionation to plant protoplasts leads to our finding of keratin intermediate filament(IF)-like system in maize protoplasts,which was identified by using immunogold lab...The application of Penman's method of cell fractionation to plant protoplasts leads to our finding of keratin intermediate filament(IF)-like system in maize protoplasts,which was identified by using immunogold labelling with monoclonal antibody of cytokeratin from animal cells.Many gold particles were found to be bound on filaments,linked by 3 nm filaments.After further digestion and extraction with DNase I and ammonium sulphate.IF-like framework-lamina-nuclear matrix system was shown under electron microscope.That IF system exists in plant protoplasts just like in animal cells,and their main component is keratin-like protein.展开更多
The formability of intermediate compounds for thirteen kinds of binary molten salt systems, including 1 179 phase diagrams was discussed by pattern recognition method with bond parameters as features. These systems we...The formability of intermediate compounds for thirteen kinds of binary molten salt systems, including 1 179 phase diagrams was discussed by pattern recognition method with bond parameters as features. These systems were MeX Me′X, MeX Me′X 2, MeX Me′X 3, MeX Me′X 4, MeX 2 Me′X 2, MeX 2 Me′X 3, MeX 2 Me′X 4, MeX 3 Me′X 3, MeNO 3 Me′(NO 3) 2, Me 2SO 4 Me′SO 4 (Me, Me′ denote metallic elements, X denotes halogen), Me AX B Me′ CX D (X is CrO 2- 4, WO 2- 4 or MoO 2- 4), and common cation systems MeX MeX′, MeX Me 2X′ (Me, Me′ denote metallic elements, X, X′ denote anion forming elements or radicals). It had been found that molten salt systems forming intermediate compounds and ones without intermediate compound distribute in different regions. Moreover, six general regularities for the formation of intermediate compounds in binary molten salt systems had been summarized on the basis of thirteen semi empirical models, which was obtained from the known phase diagrams.[展开更多
We study the eigenstate problem of a kind of coupled oscillators in the new quantum mechanical representation |q,μ,υ〉, which is defined as the eigenvector of the operator (μQ + υP), whereμ and υ are two rea...We study the eigenstate problem of a kind of coupled oscillators in the new quantum mechanical representation |q,μ,υ〉, which is defined as the eigenvector of the operator (μQ + υP), whereμ and υ are two real parameters. We also use the U operator transformation method to deal with the same problem. We obtain the normally ordered product expressions of U operator and eigenvector. It is shown that the ground state of system Hamiltonian is a squeezed state.展开更多
A new efficient adapting virtual intermediate instruction set,V-IIS,is designed and implemented towards the optimized dynamic binary translator (DBT) system.With the help of this powerful but previously little-studied...A new efficient adapting virtual intermediate instruction set,V-IIS,is designed and implemented towards the optimized dynamic binary translator (DBT) system.With the help of this powerful but previously little-studied component,DBTs can not only get rid of the dependence of machine(s),but also get better performance.From our systematical study and evaluation,experimental results demonstrate that if V-IIS is well designed,without affecting the other optimizing measures,this could make DBT's performance close to those who do not have intermediate instructions.This study is an important step towards the grand goal of high performance "multi-source" and "multi-target" dynamic binary translation.展开更多
Fig.1 shows the impact parameter-averaged asymptotic values of N_n and N_p i.e.b(left window)and b(right window)as a function of the neutron-proton ratio of the colliding system with the same target mass and the same ...Fig.1 shows the impact parameter-averaged asymptotic values of N_n and N_p i.e.b(left window)and b(right window)as a function of the neutron-proton ratio of the colliding system with the same target mass and the same projectile mass for six colliding systems:^(74)Kr+^(74)Se,^(74)Se+^(74)Se,^(74)Ge+^(74)Se,^(74)Ge+^(74)Ge,展开更多
Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation pr...Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation process under two different orientations of σ_(2),i.e.σ_(2) parallel to the fracture plane(Scheme 2)and σ_(2) cutting through the fracture plane(Scheme 3),under varying σ_(3) from 10 MPa to 40 MPa.The peak or fracture reactivation strength,deformation,failure mode,and post-peak mechanical behavior of intact(Scheme 1)and pre-fractured(Schemes 2 and 3)specimens were also compared.Results show that for intact specimens,the stress remains nearly constant in the residual sliding stage with no stick-slip,and the newly formed fracture surface only propagates along the σ_(2) direction when σ_(3) ranges from 10 MPa to 30 MPa,while it extends along both σ_(2) and σ_(3) directions when σ_(3) increases to 40 MPa;for the pre-fractured specimens,the fractures are usually reactivated under all the σ_(3) levels in Scheme 2,but fracture reactivation only occurs when σ_(3) is greater than 25 MPa in Scheme 3,below which new faulting traversing the original macro fracture occurs.In all the test schemes,both ε_(2) and ε_(3) experience an accumulative process of elongation,after which an abrupt change occurs at the point of the final failure;the degree of this change is dependent on the orientation of the new faulting or the slip direction of the original fracture,and it is generally more than 10 times larger in the slip direction of the original fracture than in the non-slip direction.Besides,the differential stress(peak stress)required for reactivation and the post-peak stress drop increase with increasing σ_(3).Post-peak stress drop and residual strength in Scheme 3 are generally greater than those in Scheme 2 at the same σ_(3) value.Our study clearly shows that intermediate principal stress orientation not only affects the fracture reactivation strength but also influences the slip deformation and failure modes.These new findings facilitate the mitigation of dynamic geological hazards associated with fracture and fault slip.展开更多
A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states...A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.展开更多
Intermediate filaments(IFs)in human cells are the products of six distinct gene families,all sharing homology in a core rod domain.These IFs assemble into non-polar polymers,providing cytoplasmic and nuclear mechanica...Intermediate filaments(IFs)in human cells are the products of six distinct gene families,all sharing homology in a core rod domain.These IFs assemble into non-polar polymers,providing cytoplasmic and nuclear mechanical support.Recent research has revealed the active and dynamic properties of IFs and their binding partners.This regulation extends beyond cell mechanics to include migration,mechanotransduction,and tumor growth.Therefore,this comprehensive review aims to catalog all human IF genes and IF-associated proteins(IFAPs),detailing their names,sizes,functions,associated human diseases,relevant literature,and links to resources like UniProt and the Protein Atlas database.These links provide access to additional information such as protein structure,subcellular localization,disease-causing mutations,and pathology.Using this catalog,we will provide an overview of the current understanding of the biological functions of IFs and IFAPs.This overview is crucial for identifying gaps in their characterization and understanding IF-mediated mechanotransduction.Additionally,we will consider potential future research directions.展开更多
BACKGROUND Diabetes and its associated microvascular complications,such as nephropathy and retinopathy,significantly impact global health.These complications often begin in the prediabetic stage,emphasizing the import...BACKGROUND Diabetes and its associated microvascular complications,such as nephropathy and retinopathy,significantly impact global health.These complications often begin in the prediabetic stage,emphasizing the importance of early detection and intervention.Inflammatory pathways are key contributors to these conditions,and recent research has identified members of the tumor necrosis factor(TNF)receptor superfamily as potential biomarkers.However,their association with renal and retinal dysfunction in individuals with intermediate hyperglycemia(IH)remains underexplored.The Early Prevention of Diabetes Complications(ePREDICE)trial provides a valuable cohort to investigate these associations and improve risk assessment strategies.AIM To identify inflammatory biomarkers associated with early renal and retinal dysfunction in individuals with IH.Specifically,we evaluate the diagnostic and prognostic potential of TNF receptor superfamily members[TNF receptor 1(TNF-R1),TNF receptor 2(TNF-R2)],T-cell immunoglobulin and mucin domain 3(TIM-3)/HAVCR2,galectin-3,and interleukin-6(IL-6)in detecting kidney dysfunction and retinopathy in this high-risk population.By understanding their roles,we seek to enhance early screening methods and inform personalized intervention strategies.METHODS A cross-sectional analysis of 967 individuals with IH from the ePREDICE trial was conducted.Participants underwent comprehensive anthropometric and biochemical assessments.Key inflammatory biomarkers,including TNF-R1,TNF-R2,TIM-3/HAVCR2,galectin-3,and IL-6,were quantified using immunoassays.Renal function was assessed using estimated glomerular filtration rate(eGFR)and albuminuria,while retinopathy was evaluated through fundoscopic examination.Statistical analyses included adjusted mean comparisons,correlation studies,and receiver operating characteristic curve analysis to assess biomarker diagnostic accuracy.RESULTS TNF-R1,TNF-R2,and TIM-3/HAVCR2 were significantly associated with reduced filtration function(eGFR<60 mL/minute/1.73 m^(2))and albuminuria,with area under the curve(AUC)values between 0.815 and 0.845.TIM-3/HAVCR2 emerged as the strongest predictor of retinopathy(AUC=0.737).Strong correlations(r>0.75)were observed among TNF-R1,TNF-R2,and TIM-3/HAVCR2,suggesting a coordinated role in inflammatory pathways.CONCLUSION Our findings highlight the potential of TNF receptor superfamily members as biomarkers for early-stage renal and retinal complications in individuals with IH.Their integration into clinical screening protocols could facilitate earlier detection,improving patient stratification and personalized management strategies.Further longitudinal studies are necessary to validate their predictive value and potential for guiding therapeutic interventions in IH and early diabetes management.展开更多
The deformation of Cu–20 wt.%Fe alloy wires leads to a significant improvement in mechanical properties and a decrease in electrical conductivity.Simultaneous improvements in strength and conductivity were achieved b...The deformation of Cu–20 wt.%Fe alloy wires leads to a significant improvement in mechanical properties and a decrease in electrical conductivity.Simultaneous improvements in strength and conductivity were achieved by intermediate annealing of drawn Cu–20 wt.%Fe wires.As the annealing temperature increased,the strength of Cu–20 wt.%Fe alloy wire decreased monotonically,but the electrical conductivity first increased and then decreased,reaching its peak value after annealing at 500℃.The decrease in strength is related to dislocation recovery and static recrystallization of Cu and Fe phases,and the increase in electrical conductivity mainly results from the aging precipitation of solid solution Fe.After annealing at 500℃,there was no obvious recrystallization of Cu phase,and many of the nano-Fe particles precipitated from Cu matrix.An annealing temperature of 600℃ induced the recrystallization of Cu matrix and an increase in Fe solid solubility,resulting in a decrease in strength and electrical conductivity.Subsequently,the wires annealed at 500℃ were drawn to 2 mm.Compared with those of the continuously drawn Cu–20 wt.%Fe alloy wires,the deformation ability,strength,and electrical conductivity of Cu–20 wt.%Fe alloy wires subjected to intermediate annealing treatment are significantly greater.This is mainly related to the sufficient precipitation of Fe in Cu matrix and the strengthening of refined Fe fibers parallel to the drawing direction.展开更多
Quasi-solid-state electrolytes,which integrate the safety characteristics of inorganic materials,the flexibility of polymers,and the high ionic conductivity of liquid electrolytes,represent a transitional solution for...Quasi-solid-state electrolytes,which integrate the safety characteristics of inorganic materials,the flexibility of polymers,and the high ionic conductivity of liquid electrolytes,represent a transitional solution for high-energy-density lithium batteries.However,the mechanisms by which inorganic fillers enhance multiphase interfacial conduction remain inadequately understood.In this work,we synthesized composite quasi-solid-state electrolytes with high inorganic content to investigate interfacial phenomena and achieve enhanced electrode interface stability.Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)particles,through surface anion anchoring,improve Li^(+)transference numbers and facilitate partial dissociation of solvated Li^(+)structures,resulting in superior ion transport kinetics that achieve an ionic conductivity of 0.51 mS cm^(−1)at room temperature.The high mass fraction of inorganic components additionally promotes the formation of more stable interfacial layers,enabling lithium-symmetric cells to operate without short-circuiting for 6000 h at 0.1 mA cm^(−2).Furthermore,this system demonstrates exceptional stability in 5 V-class lithium metal full cells,maintaining 80.5%capacity retention over 200 cycles at 0.5C.These findings guide the role of inorganic interfaces in composite electrolytes and demonstrate their potential for advancing high-voltage lithium battery technology.展开更多
Addressing inadequate OH^(*)adsorption in Ru Co alloy catalysts is crucial for boosting intermediate coverage and redirecting the water-splitting pathway.Herein,the adaptive P sites were strategically incorporated to ...Addressing inadequate OH^(*)adsorption in Ru Co alloy catalysts is crucial for boosting intermediate coverage and redirecting the water-splitting pathway.Herein,the adaptive P sites were strategically incorporated to overcome the aforementioned challenge.The P sites,as potent OH^(*)adsorption centers,synergize with Co sites to promote water dissociation and enrich surrounding Ru sites with H*intermediates,thus triggering the Volmer-Tafel route for hydrogen evolution reaction(HER).Besides,during the oxygen evolution reaction(OER),the surface of P-Ru Co was reconstructed into Ru-doped Co OOH with anchored PO_(4)^(3-).These PO_(4)^(3-)not only circumvent the intrinsic OH^(*)adsorption limitations of Ru-Co OOH in the adsorbate evolution mechanism(AEM)by rerouting to a more expeditious lattice oxygen oxidation mechanism(LOM)but also improve the coverage of key oxygen-containing intermediates,significantly accelerating OER kinetics.Consequently,the P-Ru Co demonstrates exceptional bifunctional performance,with overpotentials of 29 m V for HER and 222 m V for OER at 10 m A cm^(-2).Remarkably,the mass activities of PRu Co for HER(5.48 A mg^(-1))and OER(2.13 A mg^(-1))are 6.2 and 11.2 times higher than those of its commercial counterparts(Ru/C for HER and RuO_(2)for OER),respectively.When integrated into an anionexchange-membrane electrolyzer,this catalyst achieves ampere-level current densities of 1.32 A cm^(-2)for water electrolysis and 1.23 A cm^(-2)for seawater electrolysis at 2.1 V,with a 500-h durability.展开更多
The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.F...The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature.展开更多
Background:Intermediate-risk prostate cancer(IR-PC)represents a heterogeneous group requiring nuanced treatment approaches,and recent advancements in radiotherapy(RT),androgen deprivation therapy(ADT),and prostatespec...Background:Intermediate-risk prostate cancer(IR-PC)represents a heterogeneous group requiring nuanced treatment approaches,and recent advancements in radiotherapy(RT),androgen deprivation therapy(ADT),and prostatespecific membrane antigen positron emission tomography(PSMA-PET/CT)imaging have prompted growing interest in personalized,risk-adapted management strategies.This study by the Turkish Society for Radiation Oncology aims to examine radiation oncologists’practices in managing IR-PC,focusing on RT and imaging modalities to identify trends for personalized treatments.Methods:A cross-sectional survey was conducted among Turkish radiation oncologists treating at least 50 prostate cancer(PC)cases annually.The 22-item questionnaire covered IR-PC management aspects such as risk stratification,imaging preferences,androgen deprivation therapy(ADT)use and duration,RT techniques,and treatment combinations.Anonymous responses were analyzed using descriptive statistics.Results:Thirty radiation oncologists participated,57%with over 20 years of experience.The median annual number of PC cases treated was 130.For risk stratification,43% followed the National Comprehensive Cancer Network(NCCN)guidelines,while 30%used the D’Amico classification.Imaging preferences revealed 47% favored PSMA-PET/CT.External beam RT was universally preferred,with 60% adopting ultra-hypofractionation.ADT was used by 97%,with 73% recommending it for unfavorable IR-PC cases.Short-term ADT(4–6 months)was the standard,administered concurrently with RT by 57%.Cardiovascular status influenced decisions for 97% of respondents,while 37% also considered patient age,preferences,and sexual health.Conclusions:This national survey demonstrates a shift toward personalized care in intermediate-risk prostate cancer in Turkey,marked by selective PSMA-PET/CT use,tailored ADT,and evolving radiotherapy practices.The findings underscore the importance of multidisciplinary collaboration—particularly between urologists and radiation oncologists—to optimize imaging integration and treatment outcomes.展开更多
Sodium-sulfur and sodium-iodine batteries are attractive due to their low cost and high capacities.However,they suffer from polysulfide/polyiodide dissolution and fast capacity decay.To solve these issues,herein,an or...Sodium-sulfur and sodium-iodine batteries are attractive due to their low cost and high capacities.However,they suffer from polysulfide/polyiodide dissolution and fast capacity decay.To solve these issues,herein,an organic species-intercalated layered MoS_(2) with oxygen-dopant(Org-MoS_(2)) was designed for the iodine encapsulation.The chemically-bonded S^(2-) from the S-Mo-S layer can not only stabilize the in situ generated I^(+) intermediate to boost the redox kinetics and deep transformations of 2I^(-)←→I_(2)←→2I^(+),but also undergo the conversion of S^(2-)←→S^(δ-) in the high voltage range of 1.5-3.4 V without structural collapse and shuttle effect.That is owning to the I^(+)-induced local charge and the electron reservoir of multi-valent Mo,which facilitate effective charge transfer via alternate dipoles of I^(δ+)-^(δ-)S^(δ+)/^(δ-)O^(δ+)-^(δ-)Mo^(δ+)-^(δ-)S^(δ+) and promote the redox of I/S/Mo.Meanwhile,the incorporated organic species are transformed into an aromatic carbonaceous material with improved electron conductivity and thinner thickness in the cycling test accompanied by the exposure of more Mo-O-Mo linkages,resulting in an increasing ultrahigh capacity and outstanding long-term durability of Org-MoS_(2)@I_(2).展开更多
基金Supported by the Foreign Experts Project of the Belt and Road Innovative Talent Exchange(No.DL2023016005L).
文摘This article proposes an adaptive extended Kalman filter(EKF)for nonlinear cyber-physical systems(CPSs)under unknown inputs and non-Gaussian noises.It is known that the traditional extended Kalman filter is applicable to nonlinear systems with Gaussian white noise.The system is reformulated with intermediate variables to expand the application of nonlinear systems under unknown inputs and non-Gaussian noises,which help decompose unknown input estimation into residual tracking and state observation subproblems.By introducing the orthogonal principle of innovation and attenuation factor,the intermediate variables-based filter can improve the estimation performance under non-Gaussian noises and unknown inputs.Simulation results validate the effectiveness of the proposed method.
文摘Hepatocellular carcinoma(HCC)is a high mortality neoplasm which usually appears on a cirrhotic liver.The therapeutic arsenal and subsequent prognostic outlook are intrinsically linked to the HCC stage at diagnosis.Notwithstanding the current deployment of treatments with curative intent(liver resection/local ablation and liver transplantation)in early and intermediate stages,a high rate of HCC recurrence persists,underscoring a pivotal clinical challenge.Emergent systemic therapies(ST),particularly immunotherapy,have demonstrate promising outcomes in terms of increase overall survival,but they are currently bound to the advanced stage of HCC.This review provides a comprehensive analysis of the literature,encompassing studies up to March 10,2024,evaluating the impact of novel ST in the early and intermediate HCC stages,specially focusing on the findings of neoadjuvant and adjuvant regimens,aimed at increasing significantly overall survival and recurrence-free survival after a treatment with curative intent.We also investigate the potential role of ST in enhancing the downstaging rate for the intermediate-stage HCC initially deemed ineligible for treatment with curative intent.Finally,we critically discuss about the current relevance of the results of these studies and the encouraging future implications of ST in the treatment schedules of early and intermediate HCC stages.
基金financially supported by the National Natural Science Foundation of China(Nos.51564015 and 51674126)the Graduate Student Innovation Special Fund of Jiangxi Province(YC2015-B064)+2 种基金the Science and Technology Research Project of Jiangxi Department of Education(GJJ150664)the Outstanding Doctoral Dissertation Project Fund of JXUST(YB2016007)the Scientific Research Fund of JXUST(NSFJ2014-G09)
文摘Metal Sm has been widely used in making Al–Sm magnet alloy materials.Conventional distillation technology to produce Sm has the disadvantages of low productivity,high costs,and pollution generation.The objective of this study was to develop a molten salt electrolyte system to produce Al–Sm alloy directly,with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption.The continuously varying cell constant(CVCC)technique was used to measure the conductivity for the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3electrolysis medium in the temperature range from 905 to 1055°C.The temperature(t)and the addition of Al2O3(W(Al2O3)),Sm2O3(W(Sm2O3)),and a combination of Al2O3and Sm2O3into the basic fluoride system were examined with respect to their effects on the conductivity(κ)and activation energy.The experimental results showed that the molten electrolyte conductivity increases with increasing temperature(t)and decreases with the addition of Al2O3or Sm2O3or both.We concluded that the optimal operation conditions for Al–Sm intermediate alloy production in the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3system are W(Al2O3)+W(Sm2O3)=3wt%,W(Al2O3):W(Sm2O3)=7:3,and a temperature of 965 to 995°C,which results in satisfactory conductivity,low fluoride evaporation losses,and low energy consumption.
基金Project supported by the Financial Science and Technology Special Projects of China(XCSTS-TI2020-28)。
文摘In this study,a molten salt co-reduction method was proposed for preparing Y-Al intermediate alloys and the electrochemical co-reduction behaviors of Y(Ⅲ)and Al(Ⅲ)and the reaction mechanism of intermetallic compound formation were investigated by transient electrochemical techniques.The results show that the reduction of Y(Ⅲ)at the Mo electrode is a reversible electrochemical process with a single-step transfer of three electrons,which is controlled by the mass transfer rate.The diffusion coefficient of Y(Ⅲ)in the fluoride salt at a temperature of 1323 K is 5.0238×10^(-3)cm^(2)/s.Moreover,the thermodynamic properties associated with the formation of Y-Al intermetallic compounds were estimated using a steady-state electrochemical method.Y-Al intermediate alloy containing 92 wt%yttrium was prepared by constant current electrolysis at 1323 K in the LiF-YF_(3)-AIF_(3)-Y_(2)O_(3)(6 wt%)-Al_(2)O_(3)(1 wt%)system at a cathodic current density of 8 A/cm^(2)for 2 h.The Y-Al intermediate alloy is mainly composed ofα-Y2Al and Y phases.The development and application of this innovative technology have solved major technical problems,such as a long production process,high energy consumption,and serious segregation of alloy elements at this stage.
文摘The application of Penman's method of cell fractionation to plant protoplasts leads to our finding of keratin intermediate filament(IF)-like system in maize protoplasts,which was identified by using immunogold labelling with monoclonal antibody of cytokeratin from animal cells.Many gold particles were found to be bound on filaments,linked by 3 nm filaments.After further digestion and extraction with DNase I and ammonium sulphate.IF-like framework-lamina-nuclear matrix system was shown under electron microscope.That IF system exists in plant protoplasts just like in animal cells,and their main component is keratin-like protein.
文摘The formability of intermediate compounds for thirteen kinds of binary molten salt systems, including 1 179 phase diagrams was discussed by pattern recognition method with bond parameters as features. These systems were MeX Me′X, MeX Me′X 2, MeX Me′X 3, MeX Me′X 4, MeX 2 Me′X 2, MeX 2 Me′X 3, MeX 2 Me′X 4, MeX 3 Me′X 3, MeNO 3 Me′(NO 3) 2, Me 2SO 4 Me′SO 4 (Me, Me′ denote metallic elements, X denotes halogen), Me AX B Me′ CX D (X is CrO 2- 4, WO 2- 4 or MoO 2- 4), and common cation systems MeX MeX′, MeX Me 2X′ (Me, Me′ denote metallic elements, X, X′ denote anion forming elements or radicals). It had been found that molten salt systems forming intermediate compounds and ones without intermediate compound distribute in different regions. Moreover, six general regularities for the formation of intermediate compounds in binary molten salt systems had been summarized on the basis of thirteen semi empirical models, which was obtained from the known phase diagrams.[
文摘We study the eigenstate problem of a kind of coupled oscillators in the new quantum mechanical representation |q,μ,υ〉, which is defined as the eigenvector of the operator (μQ + υP), whereμ and υ are two real parameters. We also use the U operator transformation method to deal with the same problem. We obtain the normally ordered product expressions of U operator and eigenvector. It is shown that the ground state of system Hamiltonian is a squeezed state.
基金Projects(12R21414600)supported by Shanghai Municipal Science and Technology Commission,China
文摘A new efficient adapting virtual intermediate instruction set,V-IIS,is designed and implemented towards the optimized dynamic binary translator (DBT) system.With the help of this powerful but previously little-studied component,DBTs can not only get rid of the dependence of machine(s),but also get better performance.From our systematical study and evaluation,experimental results demonstrate that if V-IIS is well designed,without affecting the other optimizing measures,this could make DBT's performance close to those who do not have intermediate instructions.This study is an important step towards the grand goal of high performance "multi-source" and "multi-target" dynamic binary translation.
文摘Fig.1 shows the impact parameter-averaged asymptotic values of N_n and N_p i.e.b(left window)and b(right window)as a function of the neutron-proton ratio of the colliding system with the same target mass and the same projectile mass for six colliding systems:^(74)Kr+^(74)Se,^(74)Se+^(74)Se,^(74)Ge+^(74)Se,^(74)Ge+^(74)Ge,
基金funding support from the National Nature Science Foundation of China(Grant No.42272334)the National Key Research and Development Program of China(Grant No.2022YFE0137200)the Taishan Scholars Program(Grant No.2019RKB01083).
文摘Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation process under two different orientations of σ_(2),i.e.σ_(2) parallel to the fracture plane(Scheme 2)and σ_(2) cutting through the fracture plane(Scheme 3),under varying σ_(3) from 10 MPa to 40 MPa.The peak or fracture reactivation strength,deformation,failure mode,and post-peak mechanical behavior of intact(Scheme 1)and pre-fractured(Schemes 2 and 3)specimens were also compared.Results show that for intact specimens,the stress remains nearly constant in the residual sliding stage with no stick-slip,and the newly formed fracture surface only propagates along the σ_(2) direction when σ_(3) ranges from 10 MPa to 30 MPa,while it extends along both σ_(2) and σ_(3) directions when σ_(3) increases to 40 MPa;for the pre-fractured specimens,the fractures are usually reactivated under all the σ_(3) levels in Scheme 2,but fracture reactivation only occurs when σ_(3) is greater than 25 MPa in Scheme 3,below which new faulting traversing the original macro fracture occurs.In all the test schemes,both ε_(2) and ε_(3) experience an accumulative process of elongation,after which an abrupt change occurs at the point of the final failure;the degree of this change is dependent on the orientation of the new faulting or the slip direction of the original fracture,and it is generally more than 10 times larger in the slip direction of the original fracture than in the non-slip direction.Besides,the differential stress(peak stress)required for reactivation and the post-peak stress drop increase with increasing σ_(3).Post-peak stress drop and residual strength in Scheme 3 are generally greater than those in Scheme 2 at the same σ_(3) value.Our study clearly shows that intermediate principal stress orientation not only affects the fracture reactivation strength but also influences the slip deformation and failure modes.These new findings facilitate the mitigation of dynamic geological hazards associated with fracture and fault slip.
基金supports from the National Natural Science Foundation of China (Grant Nos.52004143 and 52374095)the open fund for the Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Grant No.SKLMRDPC21KF06).
文摘A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.
基金the National Natural Science Foundation of China(Grant No.32070777 to F.N.).
文摘Intermediate filaments(IFs)in human cells are the products of six distinct gene families,all sharing homology in a core rod domain.These IFs assemble into non-polar polymers,providing cytoplasmic and nuclear mechanical support.Recent research has revealed the active and dynamic properties of IFs and their binding partners.This regulation extends beyond cell mechanics to include migration,mechanotransduction,and tumor growth.Therefore,this comprehensive review aims to catalog all human IF genes and IF-associated proteins(IFAPs),detailing their names,sizes,functions,associated human diseases,relevant literature,and links to resources like UniProt and the Protein Atlas database.These links provide access to additional information such as protein structure,subcellular localization,disease-causing mutations,and pathology.Using this catalog,we will provide an overview of the current understanding of the biological functions of IFs and IFAPs.This overview is crucial for identifying gaps in their characterization and understanding IF-mediated mechanotransduction.Additionally,we will consider potential future research directions.
基金Supported by the Instituto de Salud Carlos Ⅲ(ISCⅢ)Through the Project Co-Funded by the European Union,No.PI20-00487,No.PI23-00119 and No.PI24-01630.
文摘BACKGROUND Diabetes and its associated microvascular complications,such as nephropathy and retinopathy,significantly impact global health.These complications often begin in the prediabetic stage,emphasizing the importance of early detection and intervention.Inflammatory pathways are key contributors to these conditions,and recent research has identified members of the tumor necrosis factor(TNF)receptor superfamily as potential biomarkers.However,their association with renal and retinal dysfunction in individuals with intermediate hyperglycemia(IH)remains underexplored.The Early Prevention of Diabetes Complications(ePREDICE)trial provides a valuable cohort to investigate these associations and improve risk assessment strategies.AIM To identify inflammatory biomarkers associated with early renal and retinal dysfunction in individuals with IH.Specifically,we evaluate the diagnostic and prognostic potential of TNF receptor superfamily members[TNF receptor 1(TNF-R1),TNF receptor 2(TNF-R2)],T-cell immunoglobulin and mucin domain 3(TIM-3)/HAVCR2,galectin-3,and interleukin-6(IL-6)in detecting kidney dysfunction and retinopathy in this high-risk population.By understanding their roles,we seek to enhance early screening methods and inform personalized intervention strategies.METHODS A cross-sectional analysis of 967 individuals with IH from the ePREDICE trial was conducted.Participants underwent comprehensive anthropometric and biochemical assessments.Key inflammatory biomarkers,including TNF-R1,TNF-R2,TIM-3/HAVCR2,galectin-3,and IL-6,were quantified using immunoassays.Renal function was assessed using estimated glomerular filtration rate(eGFR)and albuminuria,while retinopathy was evaluated through fundoscopic examination.Statistical analyses included adjusted mean comparisons,correlation studies,and receiver operating characteristic curve analysis to assess biomarker diagnostic accuracy.RESULTS TNF-R1,TNF-R2,and TIM-3/HAVCR2 were significantly associated with reduced filtration function(eGFR<60 mL/minute/1.73 m^(2))and albuminuria,with area under the curve(AUC)values between 0.815 and 0.845.TIM-3/HAVCR2 emerged as the strongest predictor of retinopathy(AUC=0.737).Strong correlations(r>0.75)were observed among TNF-R1,TNF-R2,and TIM-3/HAVCR2,suggesting a coordinated role in inflammatory pathways.CONCLUSION Our findings highlight the potential of TNF receptor superfamily members as biomarkers for early-stage renal and retinal complications in individuals with IH.Their integration into clinical screening protocols could facilitate earlier detection,improving patient stratification and personalized management strategies.Further longitudinal studies are necessary to validate their predictive value and potential for guiding therapeutic interventions in IH and early diabetes management.
基金support provided by National Natural Science Foundation of China(Nos.52405364 and 52171110)Jiangsu Funding Program for Excellent Postdoctoral Talent+3 种基金JITRI Advanced Materials R&D Co.Ltdsupport by European Union Horizon 2020 Research and Innovation Program(857470)European Regional Development Fund via the Foundation for Polish Science International Research Agenda PLUS program(MAB PLUS/2018/8)The publication was created within the framework of the project of the Minister of Science and Higher Education,Support for the Activities of Centres of Excellence established in Poland under Horizon 2020,under contract No.MEiN/2023/DIR/3795.
文摘The deformation of Cu–20 wt.%Fe alloy wires leads to a significant improvement in mechanical properties and a decrease in electrical conductivity.Simultaneous improvements in strength and conductivity were achieved by intermediate annealing of drawn Cu–20 wt.%Fe wires.As the annealing temperature increased,the strength of Cu–20 wt.%Fe alloy wire decreased monotonically,but the electrical conductivity first increased and then decreased,reaching its peak value after annealing at 500℃.The decrease in strength is related to dislocation recovery and static recrystallization of Cu and Fe phases,and the increase in electrical conductivity mainly results from the aging precipitation of solid solution Fe.After annealing at 500℃,there was no obvious recrystallization of Cu phase,and many of the nano-Fe particles precipitated from Cu matrix.An annealing temperature of 600℃ induced the recrystallization of Cu matrix and an increase in Fe solid solubility,resulting in a decrease in strength and electrical conductivity.Subsequently,the wires annealed at 500℃ were drawn to 2 mm.Compared with those of the continuously drawn Cu–20 wt.%Fe alloy wires,the deformation ability,strength,and electrical conductivity of Cu–20 wt.%Fe alloy wires subjected to intermediate annealing treatment are significantly greater.This is mainly related to the sufficient precipitation of Fe in Cu matrix and the strengthening of refined Fe fibers parallel to the drawing direction.
基金supported by the Science and Technology Commission of Shanghai Municipality(No.2024ZDSYS2),China.
文摘Quasi-solid-state electrolytes,which integrate the safety characteristics of inorganic materials,the flexibility of polymers,and the high ionic conductivity of liquid electrolytes,represent a transitional solution for high-energy-density lithium batteries.However,the mechanisms by which inorganic fillers enhance multiphase interfacial conduction remain inadequately understood.In this work,we synthesized composite quasi-solid-state electrolytes with high inorganic content to investigate interfacial phenomena and achieve enhanced electrode interface stability.Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)particles,through surface anion anchoring,improve Li^(+)transference numbers and facilitate partial dissociation of solvated Li^(+)structures,resulting in superior ion transport kinetics that achieve an ionic conductivity of 0.51 mS cm^(−1)at room temperature.The high mass fraction of inorganic components additionally promotes the formation of more stable interfacial layers,enabling lithium-symmetric cells to operate without short-circuiting for 6000 h at 0.1 mA cm^(−2).Furthermore,this system demonstrates exceptional stability in 5 V-class lithium metal full cells,maintaining 80.5%capacity retention over 200 cycles at 0.5C.These findings guide the role of inorganic interfaces in composite electrolytes and demonstrate their potential for advancing high-voltage lithium battery technology.
基金supported by the National Natural Science Foundation of China(Nos.52301279 and 51901115)the Shandong Provincial Natural Science Foundation,China(ZR2023MB122 and ZR2019PEM001)+1 种基金the Outstanding Youth Innovation Team of Universities in Shandong Province(2024KJH067)the Innovation fund project for graduate student of China University of Petroleum(East China)supported by the Fundamental Research Funds for the Central Universities(No.23CX04010A)。
文摘Addressing inadequate OH^(*)adsorption in Ru Co alloy catalysts is crucial for boosting intermediate coverage and redirecting the water-splitting pathway.Herein,the adaptive P sites were strategically incorporated to overcome the aforementioned challenge.The P sites,as potent OH^(*)adsorption centers,synergize with Co sites to promote water dissociation and enrich surrounding Ru sites with H*intermediates,thus triggering the Volmer-Tafel route for hydrogen evolution reaction(HER).Besides,during the oxygen evolution reaction(OER),the surface of P-Ru Co was reconstructed into Ru-doped Co OOH with anchored PO_(4)^(3-).These PO_(4)^(3-)not only circumvent the intrinsic OH^(*)adsorption limitations of Ru-Co OOH in the adsorbate evolution mechanism(AEM)by rerouting to a more expeditious lattice oxygen oxidation mechanism(LOM)but also improve the coverage of key oxygen-containing intermediates,significantly accelerating OER kinetics.Consequently,the P-Ru Co demonstrates exceptional bifunctional performance,with overpotentials of 29 m V for HER and 222 m V for OER at 10 m A cm^(-2).Remarkably,the mass activities of PRu Co for HER(5.48 A mg^(-1))and OER(2.13 A mg^(-1))are 6.2 and 11.2 times higher than those of its commercial counterparts(Ru/C for HER and RuO_(2)for OER),respectively.When integrated into an anionexchange-membrane electrolyzer,this catalyst achieves ampere-level current densities of 1.32 A cm^(-2)for water electrolysis and 1.23 A cm^(-2)for seawater electrolysis at 2.1 V,with a 500-h durability.
基金the French Defense Innovation Agency (AID)the French Procurement Agency for Armament (DGA)ONERA's scientific direction for funding and supporting the present work
文摘The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature.
文摘Background:Intermediate-risk prostate cancer(IR-PC)represents a heterogeneous group requiring nuanced treatment approaches,and recent advancements in radiotherapy(RT),androgen deprivation therapy(ADT),and prostatespecific membrane antigen positron emission tomography(PSMA-PET/CT)imaging have prompted growing interest in personalized,risk-adapted management strategies.This study by the Turkish Society for Radiation Oncology aims to examine radiation oncologists’practices in managing IR-PC,focusing on RT and imaging modalities to identify trends for personalized treatments.Methods:A cross-sectional survey was conducted among Turkish radiation oncologists treating at least 50 prostate cancer(PC)cases annually.The 22-item questionnaire covered IR-PC management aspects such as risk stratification,imaging preferences,androgen deprivation therapy(ADT)use and duration,RT techniques,and treatment combinations.Anonymous responses were analyzed using descriptive statistics.Results:Thirty radiation oncologists participated,57%with over 20 years of experience.The median annual number of PC cases treated was 130.For risk stratification,43% followed the National Comprehensive Cancer Network(NCCN)guidelines,while 30%used the D’Amico classification.Imaging preferences revealed 47% favored PSMA-PET/CT.External beam RT was universally preferred,with 60% adopting ultra-hypofractionation.ADT was used by 97%,with 73% recommending it for unfavorable IR-PC cases.Short-term ADT(4–6 months)was the standard,administered concurrently with RT by 57%.Cardiovascular status influenced decisions for 97% of respondents,while 37% also considered patient age,preferences,and sexual health.Conclusions:This national survey demonstrates a shift toward personalized care in intermediate-risk prostate cancer in Turkey,marked by selective PSMA-PET/CT use,tailored ADT,and evolving radiotherapy practices.The findings underscore the importance of multidisciplinary collaboration—particularly between urologists and radiation oncologists—to optimize imaging integration and treatment outcomes.
基金supported by the National Natural Science Foundation of China (22171030 and 21771028)the Large-Scale Instrument and Equipment Open Foundation in Chongqing University (202303150030)。
文摘Sodium-sulfur and sodium-iodine batteries are attractive due to their low cost and high capacities.However,they suffer from polysulfide/polyiodide dissolution and fast capacity decay.To solve these issues,herein,an organic species-intercalated layered MoS_(2) with oxygen-dopant(Org-MoS_(2)) was designed for the iodine encapsulation.The chemically-bonded S^(2-) from the S-Mo-S layer can not only stabilize the in situ generated I^(+) intermediate to boost the redox kinetics and deep transformations of 2I^(-)←→I_(2)←→2I^(+),but also undergo the conversion of S^(2-)←→S^(δ-) in the high voltage range of 1.5-3.4 V without structural collapse and shuttle effect.That is owning to the I^(+)-induced local charge and the electron reservoir of multi-valent Mo,which facilitate effective charge transfer via alternate dipoles of I^(δ+)-^(δ-)S^(δ+)/^(δ-)O^(δ+)-^(δ-)Mo^(δ+)-^(δ-)S^(δ+) and promote the redox of I/S/Mo.Meanwhile,the incorporated organic species are transformed into an aromatic carbonaceous material with improved electron conductivity and thinner thickness in the cycling test accompanied by the exposure of more Mo-O-Mo linkages,resulting in an increasing ultrahigh capacity and outstanding long-term durability of Org-MoS_(2)@I_(2).