期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-Consistency Training for Semi-Supervised Medical Image Segmentation
1
作者 WU Changxue ZHANG Wenxi +1 位作者 HAN Jiaozhi WANG Hongyu 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期800-814,共15页
Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adep... Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adept at leveraging a modest amount of labeled data.Nonetheless,most prevailing SSL segmentation methods for medical images either rely on the single consistency training method or directly fine-tune SSL methods designed for natural images.In this paper,we propose an innovative semi-supervised method called multi-consistency training(MCT)for medical image segmentation.Our approach transcends the constraints of prior methodologies by considering consistency from a dual perspective:output consistency across different up-sampling methods and output consistency of the same data within the same network under various perturbations to the intermediate features.We design distinct semi-supervised loss regression methods for these two types of consistencies.To enhance the application of our MCT model,we also develop a dedicated decoder as the core of our neural network.Thorough experiments were conducted on the polyp dataset and the dental dataset,rigorously compared against other SSL methods.Experimental results demonstrate the superiority of our approach,achieving higher segmentation accuracy.Moreover,comprehensive ablation studies and insightful discussion substantiate the efficacy of our approach in navigating the intricacies of medical image segmentation. 展开更多
关键词 semi-supervised learning(SSL) multi-consistency training(MCT) medical image segmentation intermediate feature perturbation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部