期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Oxygen deficient Eu_(2)O_(3-δ) synchronizes the shielding and catalytic conversion of polysulfides toward high-performance lithium sulfur batteries
1
作者 Ming Xu Teng Deng +8 位作者 Chenzhaosha Li Hongyang Zhao Juan Wang Yatao Liu Jianan Wang Guodong Feng Na Li Shujiang Ding Kai Xi 《Chinese Chemical Letters》 2025年第10期593-598,共6页
Lithium-sulfur batteries(LSBs)are promising energy storage systems due to their low cost and high energy density.However,sluggish reaction kinetics and the“shuttle effect”of lithium polysulfides(LiPSs)from sulfur ca... Lithium-sulfur batteries(LSBs)are promising energy storage systems due to their low cost and high energy density.However,sluggish reaction kinetics and the“shuttle effect”of lithium polysulfides(LiPSs)from sulfur cathode hinder the practical application of LSBs.In this work,a separator loaded with the Eu_(2)O_(3-δ)nanoparticles/carbon nanotube interlayer is designed to immobilize Li PSs and catalyze their conversion reaction.The oxygen-deficient Eu_(2)O_(3-δ)nanoparticles,with abundant catalytic sites,promote Li PSs conversion kinetics even at high current densities.Moreover,the unique 4f electronic structure of Eu_(2)O_(3-δ)effectively mitigates undesired sulfur cathode crossover,significantly enhancing the cycling performance of LSBs.Specifically,a high capacity of 620.7 mAh/g at a rate of 5 C is achieved,maintaining at 545 mAh/g after 300 cycles at 1 C.This work demonstrates the potential application of rare earth catalysts in LSBs,offering new research avenues for promoting dynamic conversion design in electrocatalysts. 展开更多
关键词 Rare earth catalysts interlayer structure Shuttle effect Mitigation Lithium-sulfur batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部