期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Enhanced interlayer interaction in sulfonated CONs membrane by amino-rich CONs enabling ultrafast proton transport
1
作者 Ping Li Bo He +2 位作者 Xuan Li Yunfei Lin Shaokun Tang 《Green Energy & Environment》 2025年第4期821-833,共13页
Covalent organic framework nanosheets(CONs)with porous crystalline features and ultrathin thickness are ideal candidates as membrane building blocks to form well-defined transfer nanochannels.The formidable challenge ... Covalent organic framework nanosheets(CONs)with porous crystalline features and ultrathin thickness are ideal candidates as membrane building blocks to form well-defined transfer nanochannels.The formidable challenge behind self-supporting CONs membrane lies in weak noncovalent interlayer interactions and thus loose stacking,insufficient strength and structure stabilities.Herein,we propose the fabrication of interlayer force-strengthened freestanding CONs membrane through the electrostatic attraction bridge effect of positively-charged amino-rich CONs(CON-NH2)to negatively-charged sulfonated CONs(CON-SO_(3)H).Ultrathin and large lateral sized CON-SO_(3)H and CON-NH2 are synthesized,followed by restacking to prepare freestanding CONs membrane with CON-SO_(3)H as the membrane bulk.Benefiting from effective interlayer interconnection due to strong electrostatic interaction,the obtained CON-SO_(3)H/CON-NH2 membrane displays features of ultrahigh integrity,dense stacking,eminent water/acid/base/organic solvents stabilities and mechanical strength(109 MPa).The shortened-SO_(3)H distance contributes to construct site-continuous transfer pathways,and the deprotonated-SO_(3)H and protonated-NH2 form acid-base pairs to decrease interfacial resistance,which impart membrane superior proton conductivity of 486 mS cm^(-1)(80℃,100%RH).This interlayer force enhancement strategy offers a promising perspective on achieving densely-stacked CONs membrane with ultrahigh mechanical property and conduction performance for fuel cell application. 展开更多
关键词 Covalent organic framework nanosheet Self-supporting membrane interlayer interaction Stability Proton conductivity
在线阅读 下载PDF
A Comparative Study on the Thermoelectric Performance of Layered β-and ε-GaSe
2
作者 Wenyan Jiao Hongmei Yuan +3 位作者 Shihao Han Yufeng Luo Haibin Cao Huijun Liu 《Chinese Physics Letters》 2025年第8期97-105,共9页
Due to the weak interlayer interactions,the binary Ⅲ-Ⅵ chalcogenides Ga Se can exist in several distinct polymorphs.Among them,the so-called β-and ε-phases simultaneously exhibit favorable total energies and moder... Due to the weak interlayer interactions,the binary Ⅲ-Ⅵ chalcogenides Ga Se can exist in several distinct polymorphs.Among them,the so-called β-and ε-phases simultaneously exhibit favorable total energies and moderate band gaps,which offer a good platform to explore their thermoelectric properties.Here,we demonstrate by first-principles calculations that the two systems have very similar band structures and phonon dispersions,despite different stacking sequences between adjacent layers.Interestingly,the lattice thermal conductivity of ε-GaSe is obviously lower than that of β-GaSe,which is inherently tied to stronger lattice anharmonicity caused by bonding heterogeneity.Besides,both systems exhibit higher p-type power factors due to doubly degenerate bands with weaker dispersions around the valence band maximum.As a consequence,a significantly enhanced p-type figure-of-merit of 2.1 can be realized at 700 K along the out-of-plane direction of theε-phase. 展开更多
关键词 thermoelectric performance chalcogenides ga se band structures weak interlayer interactions weak interlayer interactionsthe thermoelectric propertiesherewe GASE III VI chalcogenides
原文传递
Effect of Magnetic Hysteresis on Magnon-Magnon Coupling Induced by Interlayer Dzyaloshinskii-Moriya Interaction
3
作者 Jihao Xia Yuqiang Wang +8 位作者 Guibin Lan Jiyang Ou Weizhou Wu Jiafeng Feng Caihua Wan Guanxiang Du Syed Rizwan Xiufeng Han Guoqiang Yu 《Chinese Physics Letters》 2026年第1期231-247,共17页
Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling ... Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems. 展开更多
关键词 universal approach magnon magnon coupling symbolic computationeliminating magnetic hysteresis bilayer coupled systems egantiferromagnets energy expressionenabling derivation analytical expressions interlayer Dzyaloshinskii Moriya interaction
原文传递
High-Performance Bilayer Sliding PtSe_(2) Infrared Photodetector
4
作者 Zhihao Qu Yuhang Zhang +4 位作者 XinWei Zhao Yinan Wang Fang Yang Weiwei Zhao HongWei Liu 《Chinese Physics Letters》 2025年第5期220-238,共19页
The weak interlayer van der Waals(vdW) interactions in two-dimensional(2D) vdW materials enable sliding ferroelectricity as an effective strategy for modulating their intrinsic properties. In this work, we systematica... The weak interlayer van der Waals(vdW) interactions in two-dimensional(2D) vdW materials enable sliding ferroelectricity as an effective strategy for modulating their intrinsic properties. In this work, we systematically investigate the influence of interlayer sliding on the electronic behavior of PtSe_(2) using density functional theory(DFT) calculations. Our results demonstrate that interlayer sliding induces a pronounced photocurrent spanning the short-wavelength infrared to visible spectral ranges. Remarkably, under an applied gate voltage, the sliding ferroelectric PtSe_(2) exhibits anomalously enhanced photovoltaic performance and an ultrahigh extinction ratio.Transmission spectral analysis reveals that this phenomenon originates from band structure modifications driven by energy-level transitions. Furthermore, the observed photocurrent enhancement via sliding ferroelectricity demonstrates universality across diverse platinum-based optoelectronic devices. This study introduces a novel paradigm for tailoring the intrinsic characteristics of 2D vdW semiconductors, expanding the design space for next-generation ferroelectric materials in advanced optoelectronic applications. 展开更多
关键词 electronic behavior bilayer sliding infrared photodetector vdw materials PTSe weak interlayer van der waals interactions modulating their intrinsic properties high performance photodetector
原文传递
Effect of thickness on the photophysics and charge carrier kinetics of graphitic carbon nitride nanoflakes 被引量:1
5
作者 Yaping Chen Huiyu Zhang +1 位作者 Rong Lu Anchi Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第3期543-546,共4页
We investigated the thickness effect on the photophysics and charge carrier kinetics of graphitic carbon nitride nanoflakes (g-CNN) by using ultraviolet visible diffuse reflectance spectroscopy, atomic force microsc... We investigated the thickness effect on the photophysics and charge carrier kinetics of graphitic carbon nitride nanoflakes (g-CNN) by using ultraviolet visible diffuse reflectance spectroscopy, atomic force microscopy, femtosecond transient absorption spectroscopy, and picosecond time-correlated single photon counting measurement. For the first time, we found that g-CNN displays a layer-dependent indirect bandgap and layer-dependent charge carrier kinetics. 展开更多
关键词 Carbon nitride nanoflakes Layer dependence Charge carrier kinetics interlayer interaction Femtosecond transient absorption
原文传递
Moiré superlattices arising from growth induced by screw dislocations in layered materials
6
作者 田伏钰 Muhammad Faizan +2 位作者 贺欣 孙远慧 张立军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期72-77,共6页
Moiré superlattices(MSLs) are modulated structures produced from homogeneous or heterogeneous two-dimensional layers stacked with a twist angle and/or lattice mismatch. Enriching the methods for fabricating MSL a... Moiré superlattices(MSLs) are modulated structures produced from homogeneous or heterogeneous two-dimensional layers stacked with a twist angle and/or lattice mismatch. Enriching the methods for fabricating MSL and realizing the unique emergent properties are key challenges in its investigation. Here we recommend that the spiral dislocation driven growth is another optional method for the preparation of high quality MSL samples. The spiral structure stabilizes the constant out-of-plane lattice distance, causing the variations in electronic and optical properties. Taking SnS_(2) MSL as an example, we find prominent properties including large band gap reduction(~ 0.4 e V) and enhanced optical activity. Firstprinciples calculations reveal that these unusual properties can be ascribed to the locally enhanced interlayer interaction associated with the Moiré potential modulation. We believe that the spiral dislocation driven growth would be a powerful method to expand the MSL family and broaden their scope of application. 展开更多
关键词 Moirésuperlattices interlayer interaction spiral dislocation layered materials
原文传递
Interlayer Slipping Facilitating Manipulation of Electronic Properties of Few-Layer Two-Dimensional Conjugated Polymers
7
作者 Yang Li Pu Wang +6 位作者 Yongshuai Wang Dan Liu Qingbin Li Jichen Dong Yunqi Liu Wenping Hu Huanli Dong 《SmartMat》 2025年第3期101-112,共12页
Two-dimensional conjugated polymers(2DCPs)have received great interest in smart devices due to their unique physical properties associated with flexibility,nanosized thickness,and correlated quantum size effect.Contro... Two-dimensional conjugated polymers(2DCPs)have received great interest in smart devices due to their unique physical properties associated with flexibility,nanosized thickness,and correlated quantum size effect.Control of interlayer interactions of multilayer 2DCPs is crucial for modulating the confinement of charge carriers,heat,and photons to give remarkable properties because of the breaking of symmetry.However,to date,it is unclear how the multilayers of 2DCPs affect their physical properties.In this article,we for the first time perform a density functional theory calculation for the interlayer slipping effect on in-plane electronic properties of few-layer 2DCPs.Based on five homopolymers formed by C-C bonds with various stacking configurations beyond the inclined and serrated ones,results show that a moderate electric field causes the valence(conduction)band of few-layer 2DCPs to exhibit distinctive electrical characteristics which are dominated by the outermost two layers on hole(electron)enriched side.Analysis based on recombined molecular orbitals reveals that band properties are sensitive to the interlayer offsets when they result from the interference among multiple orbitals from each building block.This result provides a new guideline for manipulating charge transfer and spintronic properties of few-layer 2DCPs through an electric field to advance their various applications. 展开更多
关键词 density functional theory interference interlayer interactions two-dimensional conjugated polymers
原文传递
Interlayer shear effect on vibrational behavior of bilayer graphene using the molecular mechanics simulation 被引量:2
8
作者 Mina Mirparizi Farshad Shakeri Aski 《Propulsion and Power Research》 SCIE 2016年第3期250-260,共11页
In this article,the interlayer shear effects on vibrational behavior of bilayer graphene(BG)are studied by using the molecular mechanics(MM)simulation.Investigation on mechanical behavior of graphenes has recently att... In this article,the interlayer shear effects on vibrational behavior of bilayer graphene(BG)are studied by using the molecular mechanics(MM)simulation.Investigation on mechanical behavior of graphenes has recently attracted because of their excellent properties.MM simulation is exploited for modeling of covalent bond in the plane of graphene layers and they are modeled as space-frame structures.The interaction between two layers is modeled by Lennard–Jones potential for not only two apposite atoms but also for all adjacent atoms.The frequencies and mode shapes for cantilever and bridged bilayer graphene as well as monolayer graphene(MG)are obtained by a finite element approach.Results show that the interlayer shear interaction has considerable effect on vibrational behavior of BG and increases the natural frequencies,because existence of horizontal forces(shear forces)that prevent the lateral displacements.It can be seen that the interaction between two layers are more considerable in second mode because the curvature and variation of displacement are higher in second mode.Also it can be found that changing of mode shapes has considerable effect on shear interaction. 展开更多
关键词 GRAPHENE VIBRATION Molecular mechanics interlayer interaction Lennard–Jones
原文传递
Shallowing interfacial carrier trap in transition metal dichalcogenide heterostructures with interlayer hybridization
9
作者 Xu Wu Jingsi Qiao +9 位作者 Liwei Liu Yan Shao Zhongliu Liu Linfei Li Zhili Zhu Cong Wang Zhixin Hu Wei Ji Yeliang Wang Hongjun Gao 《Nano Research》 SCIE EI CAS CSCD 2021年第5期1390-1396,共7页
With the unique properties,layered transition metal dichalcogenide(TMD)and its heterostructures exhibit great potential for applications in electronics.The electrical performance,e.g.,contact barrier and resistance to... With the unique properties,layered transition metal dichalcogenide(TMD)and its heterostructures exhibit great potential for applications in electronics.The electrical performance,e.g.,contact barrier and resistance to electrodes,of TMD heterostructure devices can be significantly tailored by employing the functional layers,called interlayer engineering.At the interface between different TMD layers,the dangling-bond states normally exist and act as traps against charge carrier flow.In this study,we propose a technique to suppress such carrier trap that uses enhanced interlayer hybridization to saturate dangling-bond states,as demonstrated in a strongly interlayer-coupled monolayer-bilayer PtSe2 heterostructure.The hybridization between the unsaturated states and the interlayer electronic states of PtSe2 significantly reduces the depth of carrier traps at the interface,as corroborated by our scanning tunnelling spectroscopic measurements and density functional theory calculations.The suppressed interfacial trap demonstrates that interlayer saturation may offer an efficient way to relay the charge flow at the interface of TMD heterostructures.Thus,this technique provides an effective way for optimizing the interface contact,the crucial issue exists in two-dimensional electronic community. 展开更多
关键词 transition metal dichalcogenide PtSe2 layered heterostructure band alignment strong interlayer interaction
原文传递
Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale M0S2 bilayer
10
作者 Hengli Duan Guinan Li +7 位作者 Hao Tan Chao Wang Qian Li Chuanchuan Liu Yuewei Yin Xiaoguang Li Zeming Qi Wensheng Yan 《Nano Research》 SCIE EI CSCD 2022年第2期881-888,共8页
Endowing bilayer transition-metal dichalcogenides(TMDs)with tunable magnetism is significant to investigate the coupling of multiple electron degrees of freedom(DOFs).However,effectively inducing and tuning the magnet... Endowing bilayer transition-metal dichalcogenides(TMDs)with tunable magnetism is significant to investigate the coupling of multiple electron degrees of freedom(DOFs).However,effectively inducing and tuning the magnetic interaction of bilayer TMDs are still challenges.Herein,we report a strategy to tune the interlayer exchange interaction of centimeter-scale MoS2 bilayer with substitutional doping of Co ion,by introducing sulfur vacancy(V_(s))to modulate the interlayer electronic coupling.This strategy could transform the interlayer exchange interaction from antiferromagnetism(AFM)to ferromagnetism(FM),as revealed by the magnetic measurements.Experimental characterizations and theoretical calculations indicate that the enhanced magnetization is mainly because the hybridization of Co 3d band and Vs-induced impurity band alters the forms of interlayer orbital hybridizations between the partial Co atoms in upper and lower layers,and also enhances the intralayer FM.Our work paves the way for tuning the interlayer exchange interaction with defects and could be extended to other two-dimensional(2D)magnetic materials. 展开更多
关键词 interlayer exchange interaction 2D magnetic materials S-vacancy interlayer coupling large-area growth
原文传递
Controllable preparation of ultrathin 2D BiOBr crystals for high-performance ultraviolet photodetector 被引量:3
11
作者 Pengfei Liu Lei Yin +6 位作者 Liping Feng Yu Sun Hanqing Sun Wenqi Xiong Congxin Xia Zhenxing Wang Zhengtang Liu 《Science China Materials》 SCIE EI CSCD 2021年第1期189-197,共9页
Ternary layered compound materials(bismuth oxyhalides and metal phosphorus trichalcogenides)stand out in electronic and optoelectronic fields due to their interesting physical properties.However,few studies focus on t... Ternary layered compound materials(bismuth oxyhalides and metal phosphorus trichalcogenides)stand out in electronic and optoelectronic fields due to their interesting physical properties.However,few studies focus on the preparation of high-quality two-dimensional(2D)BiOBr crystals with a typical layered structure,let alone their optoelectronic applications.Here,for the first time,high-quality 2D BiOBr crystals with ultrathin thicknesses(less than 10 nm)and large domain sizes(~100μm)were efficiently prepared via a modified space-confined chemical vapor deposition(SCCVD)method.It is demonstrated that a moderate amount of H2O molecules in the SCCVD system greatly promote the formation of high-quality 2D BiOBr crystals because of the strong polarity of H2O molecules.In addition,a linear relationship between the thickness of BiOBr nanosheets and Raman shift of A1g(1)mode was found.Corresponding theoretical calculations were carried out to verify the experimental data.Furthermore,the BiOBr-based photodetector was fabricated,exhibiting excellent performances with a responsivity of 12.4 A W-1 and a detectivity of 1.6×1013 Jones at 365 nm.This study paves the way for controllable preparation of high-quality 2D BiOBr crystals and implies intriguing opportunities of them in optoelectronic applications. 展开更多
关键词 2D BiOBr crystals SCCVD method H2O molecule interlayer interaction ultraviolet photodetector
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部