The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram...The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.展开更多
在传统行业向智能制造升级转型发展背景下,分析目前定制家居产品设计及数据应用的现状,阐述应用参数化三维设计的重要性,并介绍参数化三维设计的方法和技术路径。以木门产品为例,在系列化、标准化、模块化分析的基础上,概述应用TopSoli...在传统行业向智能制造升级转型发展背景下,分析目前定制家居产品设计及数据应用的现状,阐述应用参数化三维设计的重要性,并介绍参数化三维设计的方法和技术路径。以木门产品为例,在系列化、标准化、模块化分析的基础上,概述应用TopSolid软件约束块进行参数化三维设计建立零部件模型库和产品族装配体模型样板的流程和方法。根据产品装配结构拓扑关系进行修改或增减调换,可快速地设计出满足客户需求的产品;通过参数化三维设计软件平台,可输出物料清单(Bill of Material,BOM)、数控加工编码等信息,实现设计、制造和生产管理一体化的智能制造。展开更多
基金Natural Science Foundation of Hunan Province,China(No.2024JJ8335)Open Topic of Hunan Geospatial Information Engineering and Technology Research Center,China(No.HNGIET2023004).
文摘The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.
文摘在传统行业向智能制造升级转型发展背景下,分析目前定制家居产品设计及数据应用的现状,阐述应用参数化三维设计的重要性,并介绍参数化三维设计的方法和技术路径。以木门产品为例,在系列化、标准化、模块化分析的基础上,概述应用TopSolid软件约束块进行参数化三维设计建立零部件模型库和产品族装配体模型样板的流程和方法。根据产品装配结构拓扑关系进行修改或增减调换,可快速地设计出满足客户需求的产品;通过参数化三维设计软件平台,可输出物料清单(Bill of Material,BOM)、数控加工编码等信息,实现设计、制造和生产管理一体化的智能制造。