As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regen...As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite out- growth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN) culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, in- cluding cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concen- tration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM) which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.展开更多
The tree frog is a prominent amphibian among terrestrial vertebrates known for its ability to adhere to various surfaces through the capillary forces of water in the microchannels between micropillars on its disc-shap...The tree frog is a prominent amphibian among terrestrial vertebrates known for its ability to adhere to various surfaces through the capillary forces of water in the microchannels between micropillars on its disc-shaped toe pads,a phenomenon known as wet adhesion.However,the secretion pattern of mucus on the attachment surface of living tree frog toe pads and the distribution of active mucus pores(AMPs)have not yet been fully elucidated.In this study,we utilized synchrotron X-ray micro-computed tomography and interference reflection microscopy to obtain the spatial distribution of the entire population of ventral mucus glands on the toe pads of living tree frogs and the real-time mucus secretion patterns from the ventral mucus pores on the contact surface under different environmental conditions.We observed that the number and secretion frequency of AMPs on the toe pad are regulated according to environmental conditions.Such dynamic mucus secretion on the tree frog’s toe pad could contribute to the understanding of capillary force regulation for wet adhesion and the development of adhesive surfaces by mimicking the mucus-secreting toe pad.展开更多
基金supported by the National Natural Science Foundation of China,No.81601066the Natural Science Foundation of Guangdong Province of China,No.2017A030313103 and 2016A030313096+2 种基金a grant from the Program of Introducing Talents of Discipline to Universities,No.B14036the Fundamental Research Funds for the Central Universities,No.21616340the Division of Intramural Research of the National Heart,Lung,and Blood Institute of National Institutes of Health
文摘As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite out- growth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN) culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, in- cluding cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concen- tration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM) which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.
基金supported by a National Research Foundation of Korea grant funded by the Korean government(MSIT)(Grant Nos.2022R1A2C1007366 and 2021R1A2C1008787).
文摘The tree frog is a prominent amphibian among terrestrial vertebrates known for its ability to adhere to various surfaces through the capillary forces of water in the microchannels between micropillars on its disc-shaped toe pads,a phenomenon known as wet adhesion.However,the secretion pattern of mucus on the attachment surface of living tree frog toe pads and the distribution of active mucus pores(AMPs)have not yet been fully elucidated.In this study,we utilized synchrotron X-ray micro-computed tomography and interference reflection microscopy to obtain the spatial distribution of the entire population of ventral mucus glands on the toe pads of living tree frogs and the real-time mucus secretion patterns from the ventral mucus pores on the contact surface under different environmental conditions.We observed that the number and secretion frequency of AMPs on the toe pad are regulated according to environmental conditions.Such dynamic mucus secretion on the tree frog’s toe pad could contribute to the understanding of capillary force regulation for wet adhesion and the development of adhesive surfaces by mimicking the mucus-secreting toe pad.