This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrate...This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.展开更多
In this paper,an interference cancellation based neural receiver for superimposed pilot(SIP)in multi-layer transmission is proposed,where the data and pilot are non-orthogonally superimposed in the same time-frequency...In this paper,an interference cancellation based neural receiver for superimposed pilot(SIP)in multi-layer transmission is proposed,where the data and pilot are non-orthogonally superimposed in the same time-frequency resource.Specifically,to deal with the intra-layer and inter-layer interference of SIP under multi-layer transmission,the interference cancellation with superimposed symbol aided channel estimation is leveraged in the neural receiver,accompanied by the pre-design of pilot code-division orthogonal mechanism at transmitter.In addition,to address the complexity issue for inter-vendor collaboration and the generalization problem in practical deployments,respectively,this paper also provides a fixed SIP(F-SIP)design based on constant pilot power ratio and scalable mechanisms for different modulation and coding schemes(MCSs)and transmission layers.Simulation results demonstrate the superiority of the proposed schemes on the performance of block error rate and throughput compared with existing counterparts.展开更多
In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the i...In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.展开更多
This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.A...With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.Also,the problem of strong selfinterference rejection should be solved in the co-time co-frequency full duplex mode which realizes spectrum multiplication in 5G communication technology.In the research of such interference rejection,interference cancellation technology has been applied.In order to reject multipath interference,multitap double LMS(Least Mean Square)loop interference cancellation system is often used for cancelling RF(Radio Frequency)domain interference cancelling.However,more taps will lead to a more complex structure of the cancellation system.A novel tap single LMS loop adaptive interference cancellation system was proposed to improve the system compactness and reduce the cost.In addition,a mathematical model was built for the proposed cancellation system,the correlation function of CP2FSK(Continuous Phase Binary Frequency Shift Keying)signal was derived,and the quantitative relationship was established between the correlation function and the interference signal bandwidth and tap delay differential.The steadystate weights and the expression of the average interference cancellation ratio(ICR)were deduced in the scenes of LOS(Line of Sight)interference with antenna swaying on an independent communication platform and indoor multipath interference.The quantitative relationship was deeply analyzed between the interference cancellation performance and the parameters such as antenna swing,LMS loop gain,and interference signal bandwidth,which was verified by simulation experiment.And the performance of the proposed interference cancellation system was compared with that of the traditional double LMS loop cancellation system.The results showed that the compact single LMS loop cancellation system can achieve an average interference rejection capability comparable to the double LMS loop cancellation system.展开更多
To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interfere...To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.展开更多
Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa...Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.展开更多
With the boom of the communication systems on some independent platforms(such as satellites,space stations,airplanes,and vessels),co-site interference is becoming prominent.The adaptive interference cancellation metho...With the boom of the communication systems on some independent platforms(such as satellites,space stations,airplanes,and vessels),co-site interference is becoming prominent.The adaptive interference cancellation method has been adopted to solve the co-site interference problem.But the broadband interference cancellation performance of traditional Adaptive Co-site Interference Cancellation System(ACICS)with large delay mismatching and antenna sway is relatively poor.This study put forward an Adaptive Co-site Broadband Interference Cancellation System With Two Auxiliary Channels(ACBICS-2A).The system model was established,and the steady state weights and Interference Cancellation Ratio(ICR)were deduced by solving a time-varying differential equation.The relationship of ICR,system gain,modulation factor,interference signal bandwidth and delay mismatching degree was acquired through an in-depth analysis.Compared with traditional adaptive interference cancellation system,the proposed ACBICS-2A can improve broadband interference cancellation ability remarkably with large delay mismatching and antenna sway for the effect of auxiliary channel.The maximum improved ICR is more than 25 dB.Finally,the theoretical and simulation results were verified by experiments.展开更多
Integrated sensing and communication(ISAC)technology is a promising candidate for next-generation communication systems.However,severe co-site interference in existing ISAC systems limits the communication and sensing...Integrated sensing and communication(ISAC)technology is a promising candidate for next-generation communication systems.However,severe co-site interference in existing ISAC systems limits the communication and sensing performance,posing significant challenges for ISAC interference management.In this work,we propose a novel interference management scheme based on the normalized least mean square(NLMS)algorithm,which mitigates the impact of co-site interference by reconstructing the interference from the local transmitter and canceling it from the received signal.Simulation results demonstrate that,compared to typical adaptive interference management schemes based on recursive least square(RLS)and stochastic gradient descent(SGD)algorithms,the proposed NLMS algorithm effectively cancels co-site interference and achieves a good balance between computational complexity and convergence performance.展开更多
Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to...Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload.Introducing SCMA into visible light communication(VLC)systems can improve the data transmission capability of the system.However,designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios.Therefore,this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate(BER)criterion.Firstly,this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced;then,the BER performance in the visible light communication system is optimized to obtain specific parameters;finally,the successive interference cancellation(SIC)detection algorithm is used at the receiver side.Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations.This can simultaneously reduce the complexity of design and detection,outperforming existing design methods for massive SCMA codebooks.展开更多
This paper describes a linear interference cancellation multi user detector for synchronous DS CDMA systems under the condition that all spread spectrum code waveforms have the constant cross correlating coefficien...This paper describes a linear interference cancellation multi user detector for synchronous DS CDMA systems under the condition that all spread spectrum code waveforms have the constant cross correlating coefficients. The basic idea is to get the estimation for total multiple access interference (MAI) of all users using a reference code waveform, then subtract the total MAI from the received signal. The structure of such a detector is nearly similar to the conventional detector. The BER expression obtained in the paper shows significant performance improvement compared to the other detectors.展开更多
Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points...Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.展开更多
FBMC/OQAM transmission system has a better spectral efficiency than OFDM.However,its orthogonality condition is only considered in the real field.In the presence of fading channels,the real orthogonality of FBMC/OQAM ...FBMC/OQAM transmission system has a better spectral efficiency than OFDM.However,its orthogonality condition is only considered in the real field.In the presence of fading channels,the real orthogonality of FBMC/OQAM might be lost,which calls for new equalization schemes.In this paper,an improved equalizer with real interference prediction(ERIP)scheme of FBMC/OQAM is proposed.We analyze the correlation between the real and the neighboring imaginary interference components taking Doppler shifts into account,and derive the improved ERIP scheme.The simulation results show that the proposed scheme can outperform the original ERIP and the one-tap equalization in time-varying multipath scenarios with an affordable complexity.展开更多
Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should ...Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.展开更多
This paper proposes a new multi-stage parallel interference cancellation scheme by modifying the conventional multi-stage parallel interference canceller(PIC).At each stage,it first converts the interference-cancelled...This paper proposes a new multi-stage parallel interference cancellation scheme by modifying the conventional multi-stage parallel interference canceller(PIC).At each stage,it first converts the interference-cancelled outputs from previous stage into thea prior information,in terms of which the bit mean values are computed and the multi-access interference(MAI)for each user is evaluated,and then an interference cancellation is performed to obtain further interference suppression.To reduce the implementation complexity,we give an approximation expression for bit mean value.The performance over AWGN channel is analyzed and compared to the conventional PIC.The user numberK=7 and spreading factorN=13 are chosen as simulation parameters.The computer simulation results show that the proposed PIC has better performance than the conventional PIC both with 2 interference cancellation(IC)stages,at bit error rate of 10?3,for example,about 3 dB performance gain is obtained by using the proposed PIC.It is also shown that our proposed PIC with 1-stage is superior to the conventional PIC with 2-stage in performance,which is of practical value because PIC with fewer stages can bring about shorter processing delay.展开更多
In ultra-dense heterogeneous networks, the co-channel inter- ference between small cells turns to be the major challenge to cell throughput improvement, especially for cell edge users. In this paper, we propose a dist...In ultra-dense heterogeneous networks, the co-channel inter- ference between small cells turns to be the major challenge to cell throughput improvement, especially for cell edge users. In this paper, we propose a distributed frequency resource al- location approach for interference cancellation, which allo- cates appropriate frequency resources when a small cell is switched on to reduce the co-channel interference to its neigh- boring small cells. This frequency resource pre-allocation aims at avoiding co-channel interference between small ceils and improving users ' throughput. The simulation results show that our proposed scheme can effectively reduce the co-chan- nel interference and achieve considerable gains in users' through put.展开更多
Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communicatio...Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communication systems. However, FBMC systems suffer from intrinsic imaginary interference caused by the real-fi eld orthogonality destruction when passing through complex-valued fading channels. By analyzing the transmultiplexer's response of FBMC/OQAM systems, in this paper, a simple conjugated transmission scheme is proposed for FBMC/OQAM systems. Following the specific conjugation design, the intrinsic imaginary interference including the intrinsic inter-symbol and the inter-carrier interference can be eliminated at the receiver side through linear signal processing operation. Meanwhile, the proposed conjugated transmission scheme is able to obtain extra linear combination diversity gains for improving the systematic performance of FBMC/OQAM. Simulation results show that the proposed scheme is more efficient than conventional methods, especially in practical application scenarios with large Doppler spread caused by high-speed movement.展开更多
To mitigate the effects of the previous symbol decision errors of a decision-feedback (DF) equalizer on the current decision, a particle filter (PF) based DF equalizer for frequency selective multiple-input-multip...To mitigate the effects of the previous symbol decision errors of a decision-feedback (DF) equalizer on the current decision, a particle filter (PF) based DF equalizer for frequency selective multiple-input-multiple-output (MIMO) channel is proposed. On the basis of the analyses of DF equalization for the MIMO wireless system, it is found that a stochastic interference cancellation (IC) scheme can be employed to prevent the error propagation in a severe space-time interference scenario. This is because the random rather than the deterministic scheme can reduce the probability of an error decision even if an error decision occurs. Besides, the signal-to-interference-plus-noise ratio (SINR) based IC order, which is obtained via pilot, can guarantee the optimality of the cancellation. The bit error rate (BER) performance of the proposed scheme is verified through simulation experiments under different multipath interference environment.展开更多
This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and ...This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and operate in the same spectrum. Joint MMSE-based parallel interference cancellation (PIC) and Turbo decoding scheme is proposed to reduce the interference to the PUs, as well as to the SUs, in which the minimum mean square estimation (MMSE) filter is only employed in the first iteration, regarded as the "weakest link" of the whole detection process, to improve the quality of the preliminary detections results before they are fed to the Turbo decoder. Simulation results show that the proposed scheme can efficiently eliminate the interference to the PUs, as well as to the SUs.展开更多
A robust interference canceller for Multi-Carrier Code Division Multiple Access(MC-CDMA) using Orthogonal Frequency Division Multiplexing (OFDM) in Rayleigh fading isproposed. This interference canceller is robust in ...A robust interference canceller for Multi-Carrier Code Division Multiple Access(MC-CDMA) using Orthogonal Frequency Division Multiplexing (OFDM) in Rayleigh fading isproposed. This interference canceller is robust in the sense that it cancels Inter-Carriers Inter-ference (ICI) and is suitable for use in dispersive channels. To come up the effects of the signaldispersion, Doppler shifts and delay spreads on the performance of MC-CDMA systems over mo-bile fading channels, this interference canceller exploits the merit of the orthogonal signaling andpilot signals to evaluate the channel parameters. This interface canceller is well suited to work initerative turbo interference cancellation.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant U21B2014,Grant 92267202,and Grant 62271081.
文摘This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.
文摘In this paper,an interference cancellation based neural receiver for superimposed pilot(SIP)in multi-layer transmission is proposed,where the data and pilot are non-orthogonally superimposed in the same time-frequency resource.Specifically,to deal with the intra-layer and inter-layer interference of SIP under multi-layer transmission,the interference cancellation with superimposed symbol aided channel estimation is leveraged in the neural receiver,accompanied by the pre-design of pilot code-division orthogonal mechanism at transmitter.In addition,to address the complexity issue for inter-vendor collaboration and the generalization problem in practical deployments,respectively,this paper also provides a fixed SIP(F-SIP)design based on constant pilot power ratio and scalable mechanisms for different modulation and coding schemes(MCSs)and transmission layers.Simulation results demonstrate the superiority of the proposed schemes on the performance of block error rate and throughput compared with existing counterparts.
基金supported by the National Fund for Distinguished Young Scholars(52025072)the National Natural Science Foundation of China(52177012)the Foundation of National Key Laboratory of Science and Technology(614221722051301).
文摘In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
基金supported by the National Natural Science Foundation of China[Grant No.61771187]the Natural Science Foundation of Hubei Province[Grant No.2016CFB396]+1 种基金the Hubei Provincial Technology Innovation Special Major Project[Grant No.2019AAA018]the Major Project of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy[HBSKFZD2015002]。
文摘With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.Also,the problem of strong selfinterference rejection should be solved in the co-time co-frequency full duplex mode which realizes spectrum multiplication in 5G communication technology.In the research of such interference rejection,interference cancellation technology has been applied.In order to reject multipath interference,multitap double LMS(Least Mean Square)loop interference cancellation system is often used for cancelling RF(Radio Frequency)domain interference cancelling.However,more taps will lead to a more complex structure of the cancellation system.A novel tap single LMS loop adaptive interference cancellation system was proposed to improve the system compactness and reduce the cost.In addition,a mathematical model was built for the proposed cancellation system,the correlation function of CP2FSK(Continuous Phase Binary Frequency Shift Keying)signal was derived,and the quantitative relationship was established between the correlation function and the interference signal bandwidth and tap delay differential.The steadystate weights and the expression of the average interference cancellation ratio(ICR)were deduced in the scenes of LOS(Line of Sight)interference with antenna swaying on an independent communication platform and indoor multipath interference.The quantitative relationship was deeply analyzed between the interference cancellation performance and the parameters such as antenna swing,LMS loop gain,and interference signal bandwidth,which was verified by simulation experiment.And the performance of the proposed interference cancellation system was compared with that of the traditional double LMS loop cancellation system.The results showed that the compact single LMS loop cancellation system can achieve an average interference rejection capability comparable to the double LMS loop cancellation system.
基金supported by the National Key Research and Development Program of China(No.2021YFB2900602)the National Natural Science Foundation of China(No.61875230).
文摘To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.
基金supported in part by the Beijing Natural Science Foundation under Grant No.L202003the National Natural Science Foundation of China under Grant U22B2001 and 62271065the Project of China Railway Corporation under Grant N2022G048.
文摘Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.
基金supported by the National Natural Science Foundation of China[Grant No.61771187]the Natural Science Foundation of Hubei Province[Grant No.2016CFB396]+1 种基金the Hubei Provincial Technology Innovation Special Major Project[Grant No.2019AAA018]the Major Project of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy[HBSKFZD2015002].
文摘With the boom of the communication systems on some independent platforms(such as satellites,space stations,airplanes,and vessels),co-site interference is becoming prominent.The adaptive interference cancellation method has been adopted to solve the co-site interference problem.But the broadband interference cancellation performance of traditional Adaptive Co-site Interference Cancellation System(ACICS)with large delay mismatching and antenna sway is relatively poor.This study put forward an Adaptive Co-site Broadband Interference Cancellation System With Two Auxiliary Channels(ACBICS-2A).The system model was established,and the steady state weights and Interference Cancellation Ratio(ICR)were deduced by solving a time-varying differential equation.The relationship of ICR,system gain,modulation factor,interference signal bandwidth and delay mismatching degree was acquired through an in-depth analysis.Compared with traditional adaptive interference cancellation system,the proposed ACBICS-2A can improve broadband interference cancellation ability remarkably with large delay mismatching and antenna sway for the effect of auxiliary channel.The maximum improved ICR is more than 25 dB.Finally,the theoretical and simulation results were verified by experiments.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFB2900200in part by National Natural Science Foundation of China under Grant Nos.61925101 and 62271085in part by Beijing Natural Science Foundation under Grant No.L223007-2.
文摘Integrated sensing and communication(ISAC)technology is a promising candidate for next-generation communication systems.However,severe co-site interference in existing ISAC systems limits the communication and sensing performance,posing significant challenges for ISAC interference management.In this work,we propose a novel interference management scheme based on the normalized least mean square(NLMS)algorithm,which mitigates the impact of co-site interference by reconstructing the interference from the local transmitter and canceling it from the received signal.Simulation results demonstrate that,compared to typical adaptive interference management schemes based on recursive least square(RLS)and stochastic gradient descent(SGD)algorithms,the proposed NLMS algorithm effectively cancels co-site interference and achieves a good balance between computational complexity and convergence performance.
基金supported in part by the National Science Foundation of China(NSFC)under Grant 62161024Jiangxi Provincial Natural Science Foundation under Grant 20224BAB212002+3 种基金Jiangxi Provincial Talent Project for Academic and Technical Leaders of Major Disciplines under Grant 20232BCJ23085,China Postdoctoral Science Foundation under Grant 2021TQ0136 and 2022M711463the State Key Laboratory of Computer Architecture(ICT,CAS)Open Project under Grant CARCHB202019supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62061030supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62161023。
文摘Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload.Introducing SCMA into visible light communication(VLC)systems can improve the data transmission capability of the system.However,designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios.Therefore,this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate(BER)criterion.Firstly,this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced;then,the BER performance in the visible light communication system is optimized to obtain specific parameters;finally,the successive interference cancellation(SIC)detection algorithm is used at the receiver side.Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations.This can simultaneously reduce the complexity of design and detection,outperforming existing design methods for massive SCMA codebooks.
文摘This paper describes a linear interference cancellation multi user detector for synchronous DS CDMA systems under the condition that all spread spectrum code waveforms have the constant cross correlating coefficients. The basic idea is to get the estimation for total multiple access interference (MAI) of all users using a reference code waveform, then subtract the total MAI from the received signal. The structure of such a detector is nearly similar to the conventional detector. The BER expression obtained in the paper shows significant performance improvement compared to the other detectors.
基金supported by the National Natural Science Foundation of China(62101415)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110757).
文摘Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.
基金This paper is supported in part by NSFC China(61771309,61671301)Shanghai Commission of Science and Technology Funding(SCST 15DZ2270400)+1 种基金Shanghai Key Laboratory Funding(STCSM 18DZ1200102)Medical Engineering Cross Research Foundation of Shanghai Jiao Tong University(YG2017QN47).
文摘FBMC/OQAM transmission system has a better spectral efficiency than OFDM.However,its orthogonality condition is only considered in the real field.In the presence of fading channels,the real orthogonality of FBMC/OQAM might be lost,which calls for new equalization schemes.In this paper,an improved equalizer with real interference prediction(ERIP)scheme of FBMC/OQAM is proposed.We analyze the correlation between the real and the neighboring imaginary interference components taking Doppler shifts into account,and derive the improved ERIP scheme.The simulation results show that the proposed scheme can outperform the original ERIP and the one-tap equalization in time-varying multipath scenarios with an affordable complexity.
基金supported in part by the National Natural Science Foundation of China under Grant 62171235 and Grant 62171237in part by the Qinglan Project of Jiangsu Provincein part by the Open Research Foundation of National Mobile Communications Research Laboratory of Southeast University under Grant 2023D01.
文摘Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.
基金Supported by the National Natural Science Foun-dation of China(69772015)
文摘This paper proposes a new multi-stage parallel interference cancellation scheme by modifying the conventional multi-stage parallel interference canceller(PIC).At each stage,it first converts the interference-cancelled outputs from previous stage into thea prior information,in terms of which the bit mean values are computed and the multi-access interference(MAI)for each user is evaluated,and then an interference cancellation is performed to obtain further interference suppression.To reduce the implementation complexity,we give an approximation expression for bit mean value.The performance over AWGN channel is analyzed and compared to the conventional PIC.The user numberK=7 and spreading factorN=13 are chosen as simulation parameters.The computer simulation results show that the proposed PIC has better performance than the conventional PIC both with 2 interference cancellation(IC)stages,at bit error rate of 10?3,for example,about 3 dB performance gain is obtained by using the proposed PIC.It is also shown that our proposed PIC with 1-stage is superior to the conventional PIC with 2-stage in performance,which is of practical value because PIC with fewer stages can bring about shorter processing delay.
文摘In ultra-dense heterogeneous networks, the co-channel inter- ference between small cells turns to be the major challenge to cell throughput improvement, especially for cell edge users. In this paper, we propose a distributed frequency resource al- location approach for interference cancellation, which allo- cates appropriate frequency resources when a small cell is switched on to reduce the co-channel interference to its neigh- boring small cells. This frequency resource pre-allocation aims at avoiding co-channel interference between small ceils and improving users ' throughput. The simulation results show that our proposed scheme can effectively reduce the co-chan- nel interference and achieve considerable gains in users' through put.
基金supported by the MOST Program of International S&T Cooperation(Grant No.2016YFE0123200)National Natural Science Foundation of China(Grant No.61471100/61101090/61571082)+1 种基金Science and Technology on Electronic Information Control Laboratory(Grant No.6142105040103)Fundamental Research Funds for the Central Universities(Grant No.ZYGX2015J012/ZYGX2014Z005)
文摘Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communication systems. However, FBMC systems suffer from intrinsic imaginary interference caused by the real-fi eld orthogonality destruction when passing through complex-valued fading channels. By analyzing the transmultiplexer's response of FBMC/OQAM systems, in this paper, a simple conjugated transmission scheme is proposed for FBMC/OQAM systems. Following the specific conjugation design, the intrinsic imaginary interference including the intrinsic inter-symbol and the inter-carrier interference can be eliminated at the receiver side through linear signal processing operation. Meanwhile, the proposed conjugated transmission scheme is able to obtain extra linear combination diversity gains for improving the systematic performance of FBMC/OQAM. Simulation results show that the proposed scheme is more efficient than conventional methods, especially in practical application scenarios with large Doppler spread caused by high-speed movement.
基金supported in part by the National Natural Science Foundation of China (60672047)the Shanghai Postdoctoral Scientific Program (05R214110).
文摘To mitigate the effects of the previous symbol decision errors of a decision-feedback (DF) equalizer on the current decision, a particle filter (PF) based DF equalizer for frequency selective multiple-input-multiple-output (MIMO) channel is proposed. On the basis of the analyses of DF equalization for the MIMO wireless system, it is found that a stochastic interference cancellation (IC) scheme can be employed to prevent the error propagation in a severe space-time interference scenario. This is because the random rather than the deterministic scheme can reduce the probability of an error decision even if an error decision occurs. Besides, the signal-to-interference-plus-noise ratio (SINR) based IC order, which is obtained via pilot, can guarantee the optimality of the cancellation. The bit error rate (BER) performance of the proposed scheme is verified through simulation experiments under different multipath interference environment.
基金Project supported by the National Natural Science Foundation of China (Grant No.60972055)the Development Foundation of the Education Commission of Shanghai Municipality (Grant No.09CG40)+1 种基金the Shanghai Pujiang Program (Grant No.08PJ14057)the Science and Technology Commission of Shanghai Municipality (Grant No.10220710300)
文摘This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and operate in the same spectrum. Joint MMSE-based parallel interference cancellation (PIC) and Turbo decoding scheme is proposed to reduce the interference to the PUs, as well as to the SUs, in which the minimum mean square estimation (MMSE) filter is only employed in the first iteration, regarded as the "weakest link" of the whole detection process, to improve the quality of the preliminary detections results before they are fed to the Turbo decoder. Simulation results show that the proposed scheme can efficiently eliminate the interference to the PUs, as well as to the SUs.
基金the National Natural Science Foundation of China(No.60172048)
文摘A robust interference canceller for Multi-Carrier Code Division Multiple Access(MC-CDMA) using Orthogonal Frequency Division Multiplexing (OFDM) in Rayleigh fading isproposed. This interference canceller is robust in the sense that it cancels Inter-Carriers Inter-ference (ICI) and is suitable for use in dispersive channels. To come up the effects of the signaldispersion, Doppler shifts and delay spreads on the performance of MC-CDMA systems over mo-bile fading channels, this interference canceller exploits the merit of the orthogonal signaling andpilot signals to evaluate the channel parameters. This interface canceller is well suited to work initerative turbo interference cancellation.