期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Effects of nanosized Au on the interface of zinc phthalocyanine/TiO_(2)for CO_(2)photoreduction
1
作者 Linlu Bai Wensen Li +5 位作者 Xiaoyu Chu Haochun Yin Yang Qu Ekaterina Kozlova Zhao-Di Yang Liqiang Jing 《Chinese Chemical Letters》 2025年第2期418-422,共5页
The interface modulation significantly affects the photocatalytic performances of supported metal phthalocyanines(MPc)-based systems.Herein,ZnPc was loaded on nanosized Au-modified TiO_(2)nanosheets(Au-T)to obtain wid... The interface modulation significantly affects the photocatalytic performances of supported metal phthalocyanines(MPc)-based systems.Herein,ZnPc was loaded on nanosized Au-modified TiO_(2)nanosheets(Au-T)to obtain wide-spectrum ZnPc/Au-T photocatalysts.Compared with large Au NP(8 nm)-mediated ZnPc/Au-T photocatalyst,ultrasmall Au NP(3 nm)-mediated one shows advantageous photoactivity,achieving 3-and 10-fold CO_(2)conversion rates compared with reference ZnPc/T and pristine TiO_(2)nanosheets,respectively.Employing monochromatic beam-assisted surface photovoltage and photocurrent action,etc.,the introduction of ultrasmall Au NPs more effectively facilitates intrinsic interfacial charge transfer.Moreover,ZnP c molecules are found more dispersed with the existence of small Au NPs hence exposing abundant Zn^(2+)sites as the catalytic center for CO_(2)reduction.This work provides a feasible design strategy and renewed recognition for supported MPc-based photocatalyst systems. 展开更多
关键词 Supported MPc photocatalyst Au nanoparticle interface modulation Charge separation CO_(2)photoreduction
原文传递
Interfacial electron rearrangement of 3D Fe_(3)O_(4)/h-YFeO_(3)composites for efficient electromagnetic wave absorption
2
作者 Yi Sui Yingde Zhang +4 位作者 Guang Liu Lei Ji Junyu Yue Chen Wu Mi Yan 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期609-618,共10页
Interface modulation is an important pathway for highly efficient electromagnetic wave absorption.Herein,tailored interfaces between Fe_(3)O_(4)particles and the hexagonal-YFeO_(3)(h-YFeO_(3))framework were constructe... Interface modulation is an important pathway for highly efficient electromagnetic wave absorption.Herein,tailored interfaces between Fe_(3)O_(4)particles and the hexagonal-YFeO_(3)(h-YFeO_(3))framework were constructed via facile self-assembly.The resulting interfa-cial electron rearrangement at the heterojunction led to enhanced dielectric and magnetic loss synergy.Experimental results and density function theory(DFT)simulations demonstrate a transition in electrical properties from a half-metallic monophase to metallic Fe_(3)O_(4)/h-YFeO_(3)composites,emphasizing the advantages of the formed heterointerface.The transformation of electron behavior is also accompan-ied by a redistribution of electrons at the Fe_(3)O_(4)/h-YFeO_(3)heterojunction,leading to the accumulation of localized electrons around the Y-O-Fe band bridge,consequently enhancing the polarization.A minimum reflection loss of-34.0 dB can be achieved at 12.0 GHz and 2.0 mm thickness with an effective bandwidth of 3.3 GHz due to the abundant interfaces,enhanced polarization,and rational impedance.Thus,the synergistic effects endow the Fe_(3)O_(4)/h-YFeO_(3)composites with high performance and tunable functional properties for efficient electromagnetic absorption. 展开更多
关键词 SELF-ASSEMBLING HETEROJUNCTION electron rearrangement interface modulation electromagnetic wave absorption
在线阅读 下载PDF
Interface modulated electron mobility enhancement in core–shell nanowires
3
作者 Yan He Hua-Kai Xu Gang Ouyang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期256-261,共6页
The transport properties of core–shell nanowires(CSNWs)under interface modulation and confinement are investigated based on the atomic-bond-relaxation(ABR)correlation mechanism and Fermi’s golden rule.An analytical ... The transport properties of core–shell nanowires(CSNWs)under interface modulation and confinement are investigated based on the atomic-bond-relaxation(ABR)correlation mechanism and Fermi’s golden rule.An analytical expression for the relationship between carrier mobility and interface mismatch strain is derived and the influence of size,shell thickness and alloyed layer on effective mass,band structures,and deformation potential constant are studied.It is found that interface modulation can not only reduce the lattice mismatch to optimize the band alignment,but also participate in the carrier transport for enhancing mobility.Moreover,the underlying mechanism regarding the interface shape dependence of transport properties in CSNWs is clarified.The great enhancement of electron mobility suggests that the interface modulation may become a potential pathway to improving the performance of nanoelectronic devices. 展开更多
关键词 core-shell nanowires interface modulated electron mobility
原文传递
Resistive switching behavior and mechanism of HfO_(x) films with large on/off ratio by structure design
4
作者 黄香林 王英 +2 位作者 黄慧香 段理 郭婷婷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期660-665,共6页
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra... Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure. 展开更多
关键词 HfO_(x)film resistive switching structure design interface modulation
原文传递
Sorbitol-Electrolyte-Additive Based Reversible Zinc Electrochemistry
5
作者 Qiong Sun Hai-Hui Du +5 位作者 Tian-Jjiang Sun Dian-Tao Li Min Cheng Jing Liang Hai-Xia Li Zhan-Liang Tao 《电化学(中英文)》 CAS 北大核心 2024年第7期28-37,共10页
The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an addi... The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries. 展开更多
关键词 Aqueous zinc ion batteries DENDRITE Sorbitol additive Solvation regulation interface modulation
在线阅读 下载PDF
A Component Selection Framework of Cohesion and Coupling Metrics
6
作者 M.Iyyappan Arvind Kumar +3 位作者 Sultan Ahmad Sudan Jha Bader Alouffi Abdullah Alharbi 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期351-365,共15页
Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primaril... Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primarily used to analyse the better software design quality,increase the reliability and reduced system software complexity.The complexity measurement of cohesion and coupling component to analyze the relationship between the component module.In this paper,proposed the component selection framework of Hexa-oval optimization algorithm for selecting the suitable components from the repository.It measures the interface density modules of coupling and cohesion in a modular software sys-tem.This cohesion measurement has been taken into two parameters for analyz-ing the result of complexity,with the help of low cohesion and high cohesion.In coupling measures between the component of inside parameters and outside parameters.Thefinal process of coupling and cohesion,the measured values were used for the average calculation of components parameter.This paper measures the complexity of direct and indirect interaction among the component as well as the proposed algorithm selecting the optimal component for the repository.The better result is observed for high cohesion and low coupling in compo-nent-based software engineering. 展开更多
关键词 Component-based software system coupling metric cohesion metric complexity component interface module density
在线阅读 下载PDF
Uniform, fast, and reliable CMOS compatible resistive switching memory 被引量:1
7
作者 Yunxia Hao Ying Zhang +7 位作者 Zuheng Wu Xumeng Zhang Tuo Shi Yongzhou Wang Jiaxue Zhu Rui Wang Yan Wang Qi Liu 《Journal of Semiconductors》 EI CAS CSCD 2022年第5期109-115,共7页
Resistive switching random access memory(RRAM) is considered as one of the potential candidates for next-generation memory. However, obtaining an RRAM device with comprehensively excellent performance, such as high re... Resistive switching random access memory(RRAM) is considered as one of the potential candidates for next-generation memory. However, obtaining an RRAM device with comprehensively excellent performance, such as high retention and endurance, low variations, as well as CMOS compatibility, etc., is still an open question. In this work, we introduce an insert TaO_(x) layer into HfO_(x)-based RRAM to optimize the device performance. Attributing to robust filament formed in the TaO_(x) layer by a forming operation, the local-field and thermal enhanced effect and interface modulation has been implemented simultaneously. Consequently, the RRAM device features large windows(> 10^(3)), fast switching speed(-10 ns), steady retention(> 72h), high endurance(> 10^(8) cycles), and excellent uniformity of both cycle-to-cycle and device-to-device. These results indicate that inserting the TaO_(x) layer can significantly improve HfO_(x)-based device performance, providing a constructive approach for the practical application of RRAM. 展开更多
关键词 UNIFORMITY resistance switching field enhance layer thermal enhance layer and interface modulation
在线阅读 下载PDF
Non-Orthogonal Multi-Carrier Transmission for Internet via Satellite 被引量:3
8
作者 Yang Yang Lidong Zhu 《China Communications》 SCIE CSCD 2017年第3期31-42,共12页
As the important complementary to terrestrial mobile communications, Internet via satellite can extend the coverage of communication and improve the continuity of data services. To build a space-terrestrial integrated... As the important complementary to terrestrial mobile communications, Internet via satellite can extend the coverage of communication and improve the continuity of data services. To build a space-terrestrial integrated communication system is the inevitable trend in the future. Taking into account combination of 5th generation(5G) terrestrial mobile communication system and satellite communication system, it is necessary to evaluate the promising 5G air interface waveform which can be adopted by satellite. In this paper, several non-orthogonal multi-carrier transmission schemes are evaluated and generalized frequency division multiplexing(GFDM) is advised as potential scheme of space-terrestrial integrated communication system. After the overview of GFDM, the implementation of GFDM transceiver is discussed respectively in time-domain and in frequency-domain. By deriving and comparing implementation complexity, GFDM modulation in time-domain is more suitable for satellite communication system. Then the properties of demodulation algorithms are specified. Based on designed pilot subcarriers, a new improved receiving algorithm is proposed in the end of the paper. The improved algorithm solves the problem of inter subcarriers interference(ICI) in matched filtering(MF) receiver and improves the re-ceiving symbol error rate(SER) obviously. The simulation and analysis prove that the proposed algorithm is effective. 展开更多
关键词 Internet via satellite air interface non-orthogonal modulation interference cancellation
在线阅读 下载PDF
通过介导相分离制备的纳米结构W-Cu基复合材料的性能
9
作者 侯超 吕皓 +6 位作者 赵治 Xintao Huang 韩铁龙 Junhua Luan Zengbao Jiao 宋晓艳 Zuoren Nie 《Engineering》 SCIE EI CAS CSCD 2023年第7期173-184,I0007,共13页
The challenge of fabricating nanostructured W–Cu composites by powder metallurgy has been solved by means of modulated phase separation.A hierarchically nanostructured(HN)W–Cu composite was prepared using intermedia... The challenge of fabricating nanostructured W–Cu composites by powder metallurgy has been solved by means of modulated phase separation.A hierarchically nanostructured(HN)W–Cu composite was prepared using intermediary Al through sluggish asynchronous phase separation.In addition to a dual network composed of a Cu phase and the W–Cu nanostructure,dense Al-containing nanoprecipitates with a body-centered cubic(bcc)structure are distributed in the W matrix.Compared with a pristine W/Cu interface,the newly formed W/Cu interfaces modulated by Al and the coherent W/Al-containing particle interfaces possess lower energy and enhanced bonding strength due to efficient electron transfer and strong coupling interactions.With a large number of stable heterogeneous interfaces and a“selflocking”geometry,the HN W–Cu composite exhibits excellent resistance against plastic deformation.The combination of the presented composite’s hardness and compressive strength outperforms all other sintered W–Cu composites with the same Cu content.Under a reciprocating sliding load,the reactive Al prevents excessive oxidation.The excellent synergy of the hardness and toughness of the friction-induced surface endows the HN composite with high abrasion resistance.This study provides a new strategy to modulate the structure and energy state of interfaces in metallic composites containing immiscible components in order to achieve high mechanical performance. 展开更多
关键词 Immiscible-component composite Phase separation NANOSTRUCTURE Mechanical properties interface modulation
在线阅读 下载PDF
Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering 被引量:6
10
作者 Pei Lin Xiang Chen +5 位作者 Xiaoqin Yan Zheng Zhang Haoge Yuan Peifeng Li Yanguang Zhao Yue Zhang 《Nano Research》 SCIE EI CAS CSCD 2014年第6期860-868,共9页
The ability to arbitrarily regulate semiconductor interfaces provides the most effective way to modulate the performance of optoelectronic devices. However, less work has been reported on piezo-modulated interface eng... The ability to arbitrarily regulate semiconductor interfaces provides the most effective way to modulate the performance of optoelectronic devices. However, less work has been reported on piezo-modulated interface engineering in all-oxide systems. In this paper, an enhanced photoresponse of an all-oxide Cu2O/ZnO heterojunction was obtained by taking advantage of the piezotronic effect. The illumination density-dependent piezoelectric modulation ability was also comprehensively investigated. An 18.6% enhancement of photoresponse was achieved when applying a a-0.88% compressive strain. Comparative experiments confirmed that this enhancement could be interpreted in terms of the band modification induced by interfacial piezoelectric polarization. The positive piezopotential generated at the ZnO side produces an increase in space charge region in Cu2O, thus providing an extra driving force to separate the excitons more efficiently under illumination. Our research provides a promising method to boost the performance of optoelectronics without altering the interface structure and could be extended to other metal oxide devices. 展开更多
关键词 all-oxide device piezotronic effect interface modulation enhanced photoresponse
原文传递
Surfactant-metal-organic framework complexes and their derivatives:advances in electrocatalysis
11
作者 Yining Liu Mengying Wang +1 位作者 Zuozhong Liang Haoquan Zheng 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第10期3209-3222,共14页
Metal-organic frameworks(MOFs)and their derivatives received more and more attention due to the diverse morphologies,rich porous structures,and tunable metal active sites,which have been widely used in energy-related ... Metal-organic frameworks(MOFs)and their derivatives received more and more attention due to the diverse morphologies,rich porous structures,and tunable metal active sites,which have been widely used in energy-related electrocatalytic reactions.Surfactants,a class of compounds with hydrophilic and hydrophobic portions in the molecular structure,are able to modulate the properties of liquid and solid surfaces.Surfactants play a crucial role in controlling the shape and size of MOFs,which helps optimize electrocatalytic performance,especially in improving the exposure and accessibility of catalytic active sites.In this review,we first outline the types and applications of surfactants.Second,we describe the interface modulation and reaction mechanism of different surfactants during the forming of MOFs and their derivatives.Finally,we discuss the current applications of surfactant-modified MOFs and their derivatives in electrocatalysis.This review provides a better understanding of surfactantassistant structure regulation and electrocatalytic activity study of MOFs and their derivatives. 展开更多
关键词 metal-organic frameworks SURFACTANTS interface modulation ELECTROCATALYSIS
原文传递
Interfacial Modulation of Polydopamine-Reduced Graphene Oxide for Achieving Highly Conductive and Strong Graphene/Cotton Composite Yarn Toward Smart Wearable Devices
12
作者 Yujin Zhang Guowen Zhang +3 位作者 Yuqi Dong Yongcai Wu Liqian Yu Yongxiao Bai 《Advanced Fiber Materials》 SCIE EI CAS 2024年第6期1798-1812,共15页
Graphene composite yarns have demonstrated significant potential in the development of multifunctional wearable elec-tronics,showcasing exceptional conductivity,mechanical properties,flexibility,and lightweight design... Graphene composite yarns have demonstrated significant potential in the development of multifunctional wearable elec-tronics,showcasing exceptional conductivity,mechanical properties,flexibility,and lightweight design.However,their performance is limited by the weak interfacial interaction between the fibers and graphene.Herein,a polydopamine-reduced graphene oxide(PDA-RGO)interfacial modulation strategy is proposed to prepare graphene-coated cotton yarns with high electrical conductivity and strength.PDA-RGO serves as an interfacial bonding molecule that interacts with the cotton yarn(CY)substrate to establish a hydrogen interface,while interconnecting with highly conductive graphene throughπ-πinterac-tions.The developed interface-designed graphene-coated yarn demonstrates an impressive average electrical conductivity of(856.27±7.02)S/m(i.e.,average resistance of(57.57±5.35)Ω).Simultaneously,the obtained conductive yarn demonstrates an exceptional average tensile strength of(172.03±8.03)MPa,surpassing that of primitive CY by approximately 1.59 times.The conductive yarns can be further used as low-voltage flexible wearable heaters and high-sensitivity pressure sensors,thus showcasing their remarkable potential for high-performance and multifunctional wearable devices in real-world applications. 展开更多
关键词 GRAPHENE interface modulation Conductive yarn Flexible wearable device
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部