The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacemen...The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacement thickness of boundary layer was correlated with a corrected non-dimensional separation criterion across the interaction after accounting for the wall temperature effects.A large number of hypersonic SWTBLIs were compiled to examine the scaling analysis over a wide range of Mach numbers,Reynolds numbers,and wall temperatures.The results indicate that the hypersonic SWTBLIs with low Reynolds numbers collapse on the supersonic SWTBLIs,while the hypersonic cases with high Reynolds numbers show a more rapid growth of the interaction length than that with low Reynolds numbers.Thus,two scaling relationships are identified according to different Reynolds numbers for the hypersonic SWTBLIs.The scaling analysis provides valuable guidelines for engineering prediction of the interaction length,and thus,enriches the knowledge of hypersonic SWTBLIs.展开更多
Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomi...Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomic force microscopy with a nanopore sensor. It is found that there exists a critical hemisphere around the nanopore, inside which the tip of an atomic force microscopy will affect the ionic current. The radius of this hemisphere, which is a bit smaller than the theoretical capture radius of ions, increases linearly with the applied bias voltage and quadratically with the nanopore diameter, but is independent of the operation modes and scanning speeds of the atomic force microscopy. A theoretical model is also proposed to describe how the tip position and geometrical parameters affect the access resistance.展开更多
Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction len...Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction lengths have not been sufficiently investigated. First, this study presents a theoretical scaling analysis and validates it through wind tunnel experiments. It conducts detailed control volume analysis of mass conservation, considering the differences between inviscid and viscous cases. Then, three models for analysing interaction length under gradual expansion waves are derived. Related experiments using schlieren photography are conducted to validate the models in a Mach 2.73 flow. The interaction scales are captured at various relative distances between the shock impingement location and the expansion regions with wedge angles ranging from 12° to 15° and expansion angles of 9°, 12°, and 15°. Three trend lines are plotted based on different expansion angles to depict the relationship between normalised interaction length and normalised interaction strength metric. In addition, the relationship between the coefficients of the trend line and the expansion angles is introduced to predict the interaction length influenced by gradual expansion waves. Finally, the estimation of normalised interaction length is derived for various coefficients within a unified form.展开更多
We chose a series of isoindigo-based conjugated polymer(ⅡDDT,ⅡDDT-C3 and ⅡDDT-C4) with different length of side chains and bifurcation positions to investigate the relationship between the degree of alignment and...We chose a series of isoindigo-based conjugated polymer(ⅡDDT,ⅡDDT-C3 and ⅡDDT-C4) with different length of side chains and bifurcation positions to investigate the relationship between the degree of alignment and the length of side chains and bifurcation positions.We found that the dichroic ratio was increased from 2.37 to 5.23 when the side chain was longer and the bifurcation position was away from the backbone.The π-π stacking distance was decreased from 3.67 A to 3.61 A when the bifurcation position was away from the backbone because of its smaller hindrance and the d-spacing of the(100)was increased from 20.06 A to 25.21 A when the side chain was longer.All the polymers were adopted an edge-on orientation with the backbone paralleled with the long axis of fibers.The weak interaction of side-chain in ⅡDDT-C4 was beneficial for the molecules being rearranged in parallel during the contact line receding and the strong n-n interaction could accelerate the interchain assembly of the parallel molecules through π-π interaction to form aligned fibers.展开更多
Experimental and theoretical researches on nanostructured exchange coupled magnets have been carried out since about 1988. Here, we review the structure and magnetic properties of the anisotropic nanocomposite soft/ha...Experimental and theoretical researches on nanostructured exchange coupled magnets have been carried out since about 1988. Here, we review the structure and magnetic properties of the anisotropic nanocomposite soft/hard multilayer magnets including some new results and phenomena from an experimental point of view. According to the different component of the oriented hard phase in the nanocomposite soft/hard multilayer magnets, three types of magnets will be discussed:1) anisotropic Nd2Fe(14)B based nanocomposite multilayer magnets, 2) anisotropic SmCo5 based nanocomposite multilayer magnets, and 3) anisotropic rare-earth free based nanocomposite multilayer magnets. For each of them, the formation of the oriented hard phase, exchange coupling, coercivity mechanism, and magnetic properties of the corresponding anisotropic nanocomposite multilayer magnets are briefly reviewed, and then the prospect of realization of bulk magnets on new results of anisotropic nanocomposite multilayer magnets will be carried out.展开更多
We propose a method to implement electromagnetically induced grating in a phaseonium medium that has been coherently generated via atomic mechanisms.Phaseonium atoms have aΛ-type structure and three distinct energy l...We propose a method to implement electromagnetically induced grating in a phaseonium medium that has been coherently generated via atomic mechanisms.Phaseonium atoms have aΛ-type structure and three distinct energy levels;such atoms are originally generated in a coherent superposition of two lower levels.The phaseonium system is comprised of three-level atoms with aΛ-type configuration,which are initially prepared in a coherent superposition of two lower levels.To accomplish this spatial modulation based on the susceptibility of phaseonium medium,a standingwave field is used.By looking at how an optical field diffracts at different relative phases,we find that the zeroth and first order diffraction intensities increase as the relative phase changes.We also investigate the impact of the Rabi frequency of the field on diffraction intensity and notice that an increasing strength of the Rabi frequency leads to amplification in the intensity of both central zeroth order and first-order diffraction.Furthermore,it has been observed that a significant rise in diffraction intensity occurs at longer interaction lengths between external fields and the atomic medium.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11772325 and 11621202)。
文摘The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacement thickness of boundary layer was correlated with a corrected non-dimensional separation criterion across the interaction after accounting for the wall temperature effects.A large number of hypersonic SWTBLIs were compiled to examine the scaling analysis over a wide range of Mach numbers,Reynolds numbers,and wall temperatures.The results indicate that the hypersonic SWTBLIs with low Reynolds numbers collapse on the supersonic SWTBLIs,while the hypersonic cases with high Reynolds numbers show a more rapid growth of the interaction length than that with low Reynolds numbers.Thus,two scaling relationships are identified according to different Reynolds numbers for the hypersonic SWTBLIs.The scaling analysis provides valuable guidelines for engineering prediction of the interaction length,and thus,enriches the knowledge of hypersonic SWTBLIs.
基金supported by the National Natural Science Foundation of China(Grants Nos.51435003&51375092)supported by the Fundamental Research Funds for the Central Universities+1 种基金the Innovative Project for Graduate Students of Jiangsu Province(Grant No.KYLX_0100)the Scientific Research Foundation of Graduate School of Southeast University(Grant No.YBJJ1540)
文摘Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomic force microscopy with a nanopore sensor. It is found that there exists a critical hemisphere around the nanopore, inside which the tip of an atomic force microscopy will affect the ionic current. The radius of this hemisphere, which is a bit smaller than the theoretical capture radius of ions, increases linearly with the applied bias voltage and quadratically with the nanopore diameter, but is independent of the operation modes and scanning speeds of the atomic force microscopy. A theoretical model is also proposed to describe how the tip position and geometrical parameters affect the access resistance.
基金co-supported by the National Natural Science Foundation of China (No. 12172175)the National Science and Technology Major Project, China (No. J2019-II0014-0035)the Science Center for Gas Turbine Project, China (Nos. P2022-C-II-002-001, P2022-A-II-002-001)
文摘Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction lengths have not been sufficiently investigated. First, this study presents a theoretical scaling analysis and validates it through wind tunnel experiments. It conducts detailed control volume analysis of mass conservation, considering the differences between inviscid and viscous cases. Then, three models for analysing interaction length under gradual expansion waves are derived. Related experiments using schlieren photography are conducted to validate the models in a Mach 2.73 flow. The interaction scales are captured at various relative distances between the shock impingement location and the expansion regions with wedge angles ranging from 12° to 15° and expansion angles of 9°, 12°, and 15°. Three trend lines are plotted based on different expansion angles to depict the relationship between normalised interaction length and normalised interaction strength metric. In addition, the relationship between the coefficients of the trend line and the expansion angles is introduced to predict the interaction length influenced by gradual expansion waves. Finally, the estimation of normalised interaction length is derived for various coefficients within a unified form.
基金supported by the National Natural Science Foundation of China (Nos. 21334006, 51577138, 21474113)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12020300)
文摘We chose a series of isoindigo-based conjugated polymer(ⅡDDT,ⅡDDT-C3 and ⅡDDT-C4) with different length of side chains and bifurcation positions to investigate the relationship between the degree of alignment and the length of side chains and bifurcation positions.We found that the dichroic ratio was increased from 2.37 to 5.23 when the side chain was longer and the bifurcation position was away from the backbone.The π-π stacking distance was decreased from 3.67 A to 3.61 A when the bifurcation position was away from the backbone because of its smaller hindrance and the d-spacing of the(100)was increased from 20.06 A to 25.21 A when the side chain was longer.All the polymers were adopted an edge-on orientation with the backbone paralleled with the long axis of fibers.The weak interaction of side-chain in ⅡDDT-C4 was beneficial for the molecules being rearranged in parallel during the contact line receding and the strong n-n interaction could accelerate the interchain assembly of the parallel molecules through π-π interaction to form aligned fibers.
基金Project supported by the State Key Project of Research and Development of China(Grant No.2017YFA0206302)the National Nature Science Foundation of China(Grant Nos.51590883,51331006,and 51471167)the Chinese Academy of Sciences(Grant No.KJZD-EW-M05-3)
文摘Experimental and theoretical researches on nanostructured exchange coupled magnets have been carried out since about 1988. Here, we review the structure and magnetic properties of the anisotropic nanocomposite soft/hard multilayer magnets including some new results and phenomena from an experimental point of view. According to the different component of the oriented hard phase in the nanocomposite soft/hard multilayer magnets, three types of magnets will be discussed:1) anisotropic Nd2Fe(14)B based nanocomposite multilayer magnets, 2) anisotropic SmCo5 based nanocomposite multilayer magnets, and 3) anisotropic rare-earth free based nanocomposite multilayer magnets. For each of them, the formation of the oriented hard phase, exchange coupling, coercivity mechanism, and magnetic properties of the corresponding anisotropic nanocomposite multilayer magnets are briefly reviewed, and then the prospect of realization of bulk magnets on new results of anisotropic nanocomposite multilayer magnets will be carried out.
基金the financial support provided by Hubei University of Automotive Technology in the form of a startup research grant(BK202212)。
文摘We propose a method to implement electromagnetically induced grating in a phaseonium medium that has been coherently generated via atomic mechanisms.Phaseonium atoms have aΛ-type structure and three distinct energy levels;such atoms are originally generated in a coherent superposition of two lower levels.The phaseonium system is comprised of three-level atoms with aΛ-type configuration,which are initially prepared in a coherent superposition of two lower levels.To accomplish this spatial modulation based on the susceptibility of phaseonium medium,a standingwave field is used.By looking at how an optical field diffracts at different relative phases,we find that the zeroth and first order diffraction intensities increase as the relative phase changes.We also investigate the impact of the Rabi frequency of the field on diffraction intensity and notice that an increasing strength of the Rabi frequency leads to amplification in the intensity of both central zeroth order and first-order diffraction.Furthermore,it has been observed that a significant rise in diffraction intensity occurs at longer interaction lengths between external fields and the atomic medium.