The glutenite reservoir is strongly heterogeneous due to the random distribution of gravels, making it challenging to perform hydraulic fracturing effectively. To solve this issue, it is essential to study interaction...The glutenite reservoir is strongly heterogeneous due to the random distribution of gravels, making it challenging to perform hydraulic fracturing effectively. To solve this issue, it is essential to study interaction behavior between hydraulic fractures(HFs) and gravels. A coupled hydro-mechanical model is proposed for HF propagation in glutenite using a grain-based discrete element method. This paper first investigates the dynamic evolution of HFs in glutenite, then analyzes the influences of various factors such as horizontal stress difference(Δσ), minimum horizontal stress(σh), gravel content(Vg), gravel size(dg), and stiffness ratio of gravel to matrix(Rs) on HF propagation geometries. Results show that penetrating the gravel is the primary HF-gravel interaction behavior, which follows sequential and staggered initiation modes. Bypassing the gravel is the secondary behavior, which obeys the sequential initiation mode and occurs when the orientation of the gravel boundary is inclined to the maximum horizontal stress(σH). An offset along the gravel boundary is usually formed while penetrating gravels, and the offsets may cause fracture widths to decrease by 37.8%-84.4%. Even if stress dominates the direction of HF propagation, HFs still tend to deflect within gravels. The deviation angle from σH decreases with rising Δσand increases with the increase of dgand Rs. Additionally, intra-gravel shear HFs(IGS-HFs) are prone to be generated in coarse-grained glutenite under high Δσ, while more gravel-bypassing shear HFs(GBSHFs) tend to be created in argillaceous glutenite with high Rsthan in sandy glutenite with low Rs. The findings above prompt the emergence of a novel HF propagation pattern in glutenite, which helps to understand the real HF geometries and to provide theoretical guidance for treatments in the field.展开更多
Objective:To evaluate the therapeutic efficacy of the umbilical acupuncture’s“Wind-Thunder Interaction Method”in treating schizophrenia(SCH)patients with liver stagnation and spleen deficiency.Methods:A total of 12...Objective:To evaluate the therapeutic efficacy of the umbilical acupuncture’s“Wind-Thunder Interaction Method”in treating schizophrenia(SCH)patients with liver stagnation and spleen deficiency.Methods:A total of 120 SCH patients with liver stagnation and spleen deficiency were selected and evenly divided by ball drawing.The umbilical acupuncture group received the“Wind-Thunder Interaction Method”,while the Western medicine group received pure Western medicine treatment.The outcomes were compared in terms of efficacy and other indicators.Results:The umbilical acupuncture group showed a higher total effective rate,a decrease in disease symptom scores,lower scores on the side effect rating scale,improved cognitive function scores,and excellent laboratory indicators,with p<0.05 between the groups.Conclusion:The“Wind-Thunder Interaction Method”of umbilical acupuncture demonstrated a relatively high effectiveness in treating SCH patients with liver stagnation and spleen deficiency,alleviating symptoms,reducing side effects,improving cognitive function,and facilitating the recovery of neuro-vascular regulatory peptide groups.展开更多
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident...The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.展开更多
To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surfac...To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.展开更多
Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenome...Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.展开更多
In this study, an advanced Lagrangian vortex- boundary element method is applied to simulate the unsteady impeller-diffuser interactions in a diffuser pump not only for design but also for off-design considerations. I...In this study, an advanced Lagrangian vortex- boundary element method is applied to simulate the unsteady impeller-diffuser interactions in a diffuser pump not only for design but also for off-design considerations. In velocity calculations based on the Biot-Savart law we do not have to grid large portions of the flow field and the calculation points are concentrated in the regions where vorticity is present. Lagrangian representation of the evolving vorticity field is well suited to moving boundaries. An integral pressure equation shows that the pressure distribution can be estimated directly from the instantaneous velocity and vorticity field. The numerical results are compared with the experimental data and the comparisons show that the method used in this study can provide us insight into the complicated unsteady impeller-diffuser interaction phenomena in a diffuser pump.展开更多
Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harm...Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harmonic excitation.Within any integration segment, as long as its length is small enough,along the circumferential curvilinear coordinate,the non- homogeneous matrix differential equation of an elastic ring of complex geometrical shape can be rewritten in terms of the homogeneous one by the method of extended homogeneous capacity proposed in this paper.For the exterior fluid domain,the multi-circular virtual source simulation technique is adopted.The source density distributed on each virtual circular curve may be ex- panded as the Fourier's series.Combining with the inverse fast Fourier transformation,a higher accuracy and efficiency method for solving 2-D exterior Helmholtz's problems is presented in this paper.In the aspect of solution to the coupling equations,the state vectors of elastic ring induced by the given harmonic excitation and generalized forces of coefficients of the Fourier series can be obtained respectively by using a high precision integration scheme combined with the method of extended homogeneous capacity put forward in this paper.According to the superposition princi- ple and compatibility conditions at the interface between the elastic ring and fluid,the algebraic equation of system can be directly constructed by using the least square approximation.Examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the method proposed is more efficient than the mixed FE-BE method in common use.展开更多
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ...Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.展开更多
This article introduces a numerical scheme on the basis of semi-implicit method for pressure-linked equations (SIMPLE) algorithm to simulate incompressible unsteady flows with fluid-structure interaction. The Navier...This article introduces a numerical scheme on the basis of semi-implicit method for pressure-linked equations (SIMPLE) algorithm to simulate incompressible unsteady flows with fluid-structure interaction. The Navier-Stokes equation is discretized spatially with collocated finite volume method and Eulerian implicit method in time domain. The hybrid method that combines immersed boundary method (IBM) and volume of fluid (VOF) method is used to deal with rigid body motion in fluid domain. The details of movement of immersed boundary (IB) and calculation of VOF are also described. This method can be easily applied to any existing finite-volume-based computational fluid dynamics (CFD) solver without complex operation, with which fluid flow interaction of arbitrarily complex geometry can be realized on a fixed mesh. The method is verified by low Reynolds number flows passing both stationary and oscillating cylinders. The drag and lift coefficients acquired by the study well accord with other published results, which indicate the reasonability of the proposed method.展开更多
Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynam...Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained.展开更多
An Arbitrary Lagrangian-Eulerian(ALE)approach with interface tracking is developed in this paper to simulate the supersonic parachute inflation.A two-way interaction between a nonlinear finite element method and a fin...An Arbitrary Lagrangian-Eulerian(ALE)approach with interface tracking is developed in this paper to simulate the supersonic parachute inflation.A two-way interaction between a nonlinear finite element method and a finite volume method is accomplished.In order to apply this interface tracking method to problems with instantaneous large deformation and self-contact,a new virtual structure contact method is proposed to leave room for the body-fitted mesh between the contact structural surfaces.In addition,the breakpoint due to the fluid mesh with negative volume is losslessly restarted by the conservative interpolation method.Based on this method,fluid and structural dynamic behaviors of a highly folded disk-gap-band parachute are obtained.Numerical results such as maximum Root Mean Square(RMS)drag,general canopy shape and the smallest canopy projected areas in the terminal descent state are in accordance with the wind tunnel test results.This analysis reveals the inflation law of the disk-gap-band parachute and provides a new numerical method for supersonic parachute design.展开更多
An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal str...An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid axe performed by the Galerkin method. The second-order semi- implicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are lineaxized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena.展开更多
The so called "alterable-element method" (AEM) was introduced to deal with the coupling interac-tion of vehicle and sub-structure considering the actual transient jump of wheel, while the classical "con...The so called "alterable-element method" (AEM) was introduced to deal with the coupling interac-tion of vehicle and sub-structure considering the actual transient jump of wheel, while the classical "contact all along" assumption based on which wheels and lower structure are always contact was abandoned. The alterable element used in this method is a conceptional element, which is used to calculate the coupling interaction of upper and lower structures and has some typical characteristics: firstly it flows along with the moving of contact point; secondly whether it is used for calculation depends on the contact state; thirdly its sizes could change according to specific problems and so on. VISUAL FORTRAN program was coded, and different moving vehicle models were presented taking into consideration the effects of random corrugation in the numerical study. The numerical solutions are favored comparing with the results obtained by alternative methods when there is no jump phenomenon existed. With abrupt irregularity, the transient jump of wheel was studied using the present method.展开更多
We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This s...We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.展开更多
In this paper, several mathmatical models for the pile- soil interaction are outlined. The Boundary Element Method is one of the very effective methods for the reasonable models of elasticity and elastoplasticity. The...In this paper, several mathmatical models for the pile- soil interaction are outlined. The Boundary Element Method is one of the very effective methods for the reasonable models of elasticity and elastoplasticity. The major of this paper is concerned with the Boundary Element Method for the pile-soil interaction, including general methods and calculating formulation of static and dynamic analysis of the pile and pile groups. Some results of analysis are also given.展开更多
The interaction between structure and wave is a typical phenomenon in naval architecture and ocean engineering.In this paper,numerical simulation is carried out to study the interaction between a two-dimensional subme...The interaction between structure and wave is a typical phenomenon in naval architecture and ocean engineering.In this paper,numerical simulation is carried out to study the interaction between a two-dimensional submerged,fixed,horizontal rigid plate and solitary wave with our in-house meshless particle CFD solver MLParticle-SJTU.First,the in-house CFD solver is verified by experimental results conducted at the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology.During the verification,the plate is submerged under water and the solitary wave with a given amplitude is generated by a piston-type wave maker.Free surface elevation of the wave and the pressure impacting on the plate is recorded and compared with experimental data respectively.The predicted pressure and surface elevation agree well with the experimental results.Then in order to further investigate factors affecting wave-structure interaction,wave height,submerged depth and plate length are analyzed.展开更多
The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interacti...The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.展开更多
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as th...A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction,step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.展开更多
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we ...Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52304003)the Natural Science Foundation of Sichuan Province(Grant No.2024NSFSC0961)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230090).
文摘The glutenite reservoir is strongly heterogeneous due to the random distribution of gravels, making it challenging to perform hydraulic fracturing effectively. To solve this issue, it is essential to study interaction behavior between hydraulic fractures(HFs) and gravels. A coupled hydro-mechanical model is proposed for HF propagation in glutenite using a grain-based discrete element method. This paper first investigates the dynamic evolution of HFs in glutenite, then analyzes the influences of various factors such as horizontal stress difference(Δσ), minimum horizontal stress(σh), gravel content(Vg), gravel size(dg), and stiffness ratio of gravel to matrix(Rs) on HF propagation geometries. Results show that penetrating the gravel is the primary HF-gravel interaction behavior, which follows sequential and staggered initiation modes. Bypassing the gravel is the secondary behavior, which obeys the sequential initiation mode and occurs when the orientation of the gravel boundary is inclined to the maximum horizontal stress(σH). An offset along the gravel boundary is usually formed while penetrating gravels, and the offsets may cause fracture widths to decrease by 37.8%-84.4%. Even if stress dominates the direction of HF propagation, HFs still tend to deflect within gravels. The deviation angle from σH decreases with rising Δσand increases with the increase of dgand Rs. Additionally, intra-gravel shear HFs(IGS-HFs) are prone to be generated in coarse-grained glutenite under high Δσ, while more gravel-bypassing shear HFs(GBSHFs) tend to be created in argillaceous glutenite with high Rsthan in sandy glutenite with low Rs. The findings above prompt the emergence of a novel HF propagation pattern in glutenite, which helps to understand the real HF geometries and to provide theoretical guidance for treatments in the field.
文摘Objective:To evaluate the therapeutic efficacy of the umbilical acupuncture’s“Wind-Thunder Interaction Method”in treating schizophrenia(SCH)patients with liver stagnation and spleen deficiency.Methods:A total of 120 SCH patients with liver stagnation and spleen deficiency were selected and evenly divided by ball drawing.The umbilical acupuncture group received the“Wind-Thunder Interaction Method”,while the Western medicine group received pure Western medicine treatment.The outcomes were compared in terms of efficacy and other indicators.Results:The umbilical acupuncture group showed a higher total effective rate,a decrease in disease symptom scores,lower scores on the side effect rating scale,improved cognitive function scores,and excellent laboratory indicators,with p<0.05 between the groups.Conclusion:The“Wind-Thunder Interaction Method”of umbilical acupuncture demonstrated a relatively high effectiveness in treating SCH patients with liver stagnation and spleen deficiency,alleviating symptoms,reducing side effects,improving cognitive function,and facilitating the recovery of neuro-vascular regulatory peptide groups.
基金National Natural Science Foundation of China under Grant No.51478247National Key Research and Development Program of China under Grant No.2016YFC1402800
文摘The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.
基金supported jointlyby the Chinese Academy of Sciences under Grant KZCX2-YW-220the National Basic Research Program of Chinaunder Grant 2009CB421405the National Natural Sci-ence Foundation of China under Grant No.40730952
文摘To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.
文摘Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.
文摘In this study, an advanced Lagrangian vortex- boundary element method is applied to simulate the unsteady impeller-diffuser interactions in a diffuser pump not only for design but also for off-design considerations. In velocity calculations based on the Biot-Savart law we do not have to grid large portions of the flow field and the calculation points are concentrated in the regions where vorticity is present. Lagrangian representation of the evolving vorticity field is well suited to moving boundaries. An integral pressure equation shows that the pressure distribution can be estimated directly from the instantaneous velocity and vorticity field. The numerical results are compared with the experimental data and the comparisons show that the method used in this study can provide us insight into the complicated unsteady impeller-diffuser interaction phenomena in a diffuser pump.
基金Project supported by the National Natural Science Foundation of China (No.10172038)
文摘Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harmonic excitation.Within any integration segment, as long as its length is small enough,along the circumferential curvilinear coordinate,the non- homogeneous matrix differential equation of an elastic ring of complex geometrical shape can be rewritten in terms of the homogeneous one by the method of extended homogeneous capacity proposed in this paper.For the exterior fluid domain,the multi-circular virtual source simulation technique is adopted.The source density distributed on each virtual circular curve may be ex- panded as the Fourier's series.Combining with the inverse fast Fourier transformation,a higher accuracy and efficiency method for solving 2-D exterior Helmholtz's problems is presented in this paper.In the aspect of solution to the coupling equations,the state vectors of elastic ring induced by the given harmonic excitation and generalized forces of coefficients of the Fourier series can be obtained respectively by using a high precision integration scheme combined with the method of extended homogeneous capacity put forward in this paper.According to the superposition princi- ple and compatibility conditions at the interface between the elastic ring and fluid,the algebraic equation of system can be directly constructed by using the least square approximation.Examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the method proposed is more efficient than the mixed FE-BE method in common use.
基金the State Key Program of National Natural Science of China under Grant No.51138001Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No.51121005Open Research Fund Program of State key Laboratory of Hydro science and Engineering under Grant No.shlhse-2010-C-03
文摘Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.
文摘This article introduces a numerical scheme on the basis of semi-implicit method for pressure-linked equations (SIMPLE) algorithm to simulate incompressible unsteady flows with fluid-structure interaction. The Navier-Stokes equation is discretized spatially with collocated finite volume method and Eulerian implicit method in time domain. The hybrid method that combines immersed boundary method (IBM) and volume of fluid (VOF) method is used to deal with rigid body motion in fluid domain. The details of movement of immersed boundary (IB) and calculation of VOF are also described. This method can be easily applied to any existing finite-volume-based computational fluid dynamics (CFD) solver without complex operation, with which fluid flow interaction of arbitrarily complex geometry can be realized on a fixed mesh. The method is verified by low Reynolds number flows passing both stationary and oscillating cylinders. The drag and lift coefficients acquired by the study well accord with other published results, which indicate the reasonability of the proposed method.
基金supported by the National Natural Science Foundation of China(51879159,51490675,11432009,and 51579145)Chang Jiang Scholars Program(T2014099)+3 种基金Shanghai Excellent Academic Leaders Program(17XD1402300)Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(2013022)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09)Lloyd’s Register Foundation for doctoral student
文摘Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained.
基金co-supported by National Nature Sciences Foundation of China(Nos 11972192,11172137)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘An Arbitrary Lagrangian-Eulerian(ALE)approach with interface tracking is developed in this paper to simulate the supersonic parachute inflation.A two-way interaction between a nonlinear finite element method and a finite volume method is accomplished.In order to apply this interface tracking method to problems with instantaneous large deformation and self-contact,a new virtual structure contact method is proposed to leave room for the body-fitted mesh between the contact structural surfaces.In addition,the breakpoint due to the fluid mesh with negative volume is losslessly restarted by the conservative interpolation method.Based on this method,fluid and structural dynamic behaviors of a highly folded disk-gap-band parachute are obtained.Numerical results such as maximum Root Mean Square(RMS)drag,general canopy shape and the smallest canopy projected areas in the terminal descent state are in accordance with the wind tunnel test results.This analysis reveals the inflation law of the disk-gap-band parachute and provides a new numerical method for supersonic parachute design.
基金the National Metal and Materials Technology Centerthe Thailand Research Fund+1 种基金the Office of Higher Education Commissionthe Chulalongkorn University for supporting the present research
文摘An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid axe performed by the Galerkin method. The second-order semi- implicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are lineaxized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena.
基金the Science and Technology Commissionof Shanghai Municipality (No. 03DZ12017)the Shang-hai Municipal Informatization Commission
文摘The so called "alterable-element method" (AEM) was introduced to deal with the coupling interac-tion of vehicle and sub-structure considering the actual transient jump of wheel, while the classical "contact all along" assumption based on which wheels and lower structure are always contact was abandoned. The alterable element used in this method is a conceptional element, which is used to calculate the coupling interaction of upper and lower structures and has some typical characteristics: firstly it flows along with the moving of contact point; secondly whether it is used for calculation depends on the contact state; thirdly its sizes could change according to specific problems and so on. VISUAL FORTRAN program was coded, and different moving vehicle models were presented taking into consideration the effects of random corrugation in the numerical study. The numerical solutions are favored comparing with the results obtained by alternative methods when there is no jump phenomenon existed. With abrupt irregularity, the transient jump of wheel was studied using the present method.
文摘We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.
文摘In this paper, several mathmatical models for the pile- soil interaction are outlined. The Boundary Element Method is one of the very effective methods for the reasonable models of elasticity and elastoplasticity. The major of this paper is concerned with the Boundary Element Method for the pile-soil interaction, including general methods and calculating formulation of static and dynamic analysis of the pile and pile groups. Some results of analysis are also given.
基金the National Natural Science Foundation of China(Grant Nos.51909160 and 51879159)the National Key Research and Development Program of China(Grant Nos.2019YFB1704200 and 2019YFC0312400)+2 种基金Chang Jiang Scholars Program(Grant No.T2014099)Shanghai Excellent Academic Leaders Program(Grant No.17XD1402300)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(Grant No.2016-23/09).
文摘The interaction between structure and wave is a typical phenomenon in naval architecture and ocean engineering.In this paper,numerical simulation is carried out to study the interaction between a two-dimensional submerged,fixed,horizontal rigid plate and solitary wave with our in-house meshless particle CFD solver MLParticle-SJTU.First,the in-house CFD solver is verified by experimental results conducted at the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology.During the verification,the plate is submerged under water and the solitary wave with a given amplitude is generated by a piston-type wave maker.Free surface elevation of the wave and the pressure impacting on the plate is recorded and compared with experimental data respectively.The predicted pressure and surface elevation agree well with the experimental results.Then in order to further investigate factors affecting wave-structure interaction,wave height,submerged depth and plate length are analyzed.
基金Supported by National Natural Science Foundation of China (No. 50678032)
文摘The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.
文摘A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction,step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2007AA12Z170)the Major Research Plan of the National Natural Science Foundation of China (Grant No 40706058)+1 种基金the Science-Technology Chenguang foundation for Young Scientist of Wuhan,China (Grant No 200850731388)the Canadian Space Agency Government Related Initiatives Program (GRIP) entitled Building Satellite Data into Fisheries and Oceans Operational Systems
文摘Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.