Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduce...Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.展开更多
As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolatio...As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.展开更多
To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the ...To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the phenomenon the classical correction algorithms and the Delaunay triangulation interpolation are analyzed.Then the algorithm procedure is explained using flow charts and illustrations. Finally experiments are described to demonstrate its effectiveness and feasibility. Experimental results demonstrate that the Delaunay triangulation interpolation can have the following effects.In the case of the same center the root mean square distances RMSD and standard deviation STD between the corrected image with Delaunay triangulation interpolation and the ideal image are 5.760 4 ×10 -14 and 5.354 2 ×10 -14 respectively.They increase to 1.790 3 2.388 8 2.338 8 and 1.262 0 1.268 1 1.202 6 after applying the quartic polynomial model L1 and model L2 to the distorted images respectively.The RMSDs and STDs between the corrected image with the Delaunay triangulation interpolation and the ideal image are 2.489 × 10 -13 and 2.449 8 ×10 -13 when their centers do not coincide. When the quartic polynomial model L1 and model L2 are applied to the distorted images they are 1.770 3 2.388 8 2.338 8 and 1.269 9 1.268 1 1.202 6 respectively.展开更多
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images,...As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images, with relatively little processing for color images. This paper proposes a quantum color image scaling scheme based on bilinear interpolation, which realizes the 2^(n_(1)) × 2^(n_(2)) quantum color image scaling. Firstly, the improved novel quantum representation of color digital images(INCQI) is employed to represent a 2^(n_(1)) × 2^(n_(2)) quantum color image, and the bilinear interpolation method for calculating pixel values of the interpolated image is presented. Then the quantum color image scaling-up and scaling-down circuits are designed by utilizing a series of quantum modules, and the complexity of the circuits is analyzed.Finally, the experimental simulation results of MATLAB based on the classical computer are given. The ultimate results demonstrate that the complexities of the scaling-up and scaling-down schemes are quadratic and linear, respectively, which are much lower than the cubic function and exponential function of other bilinear interpolation schemes.展开更多
Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source ima...Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source image as SVMs input patterns. After the proper neighbor pixels region is selected, trained support vectors are obtained by training SVMs with local spatial properties that include the average of the neighbor pixels gray values and the gray value variations between neighbor pixels in the selected region. The support vector regression machines are employed to estimate the gray values of unknown pixels with the neighbor pixels and local spatial properties information. Some interpolation experiments show that the proposed scheme is superior to the linear, cubic, neural network and other SVMs based interpolation approaches.展开更多
In content-based image retrieval(CBIR),primitive image signatures are critical because they represent the visual characteristics.Image signatures,which are algorithmically descriptive and accurately recognized visual ...In content-based image retrieval(CBIR),primitive image signatures are critical because they represent the visual characteristics.Image signatures,which are algorithmically descriptive and accurately recognized visual components,are used to appropriately index and retrieve comparable results.To differentiate an image in the category of qualifying contender,feature vectors must have image information's like colour,objects,shape,spatial viewpoints.Previous methods such as sketch-based image retrieval by salient contour(SBIR)and greedy learning of deep Boltzmann machine(GDBM)used spatial information to distinguish between image categories.This requires interest points and also feature analysis emerged image detection problems.Thus,a proposed model to overcome this issue and predict the repeating pattern as well as series of pixels that conclude similarity has been necessary.In this study,a technique called CBIR-similarity measure via artificial neural network interpolation(CBIR-SMANN)has been presented.By collecting datasets,the images are resized then subject to Gaussian filtering in the pre-processing stage,then by permitting them to the Hessian detector,the interesting points are gathered.Based on Skewness,mean,kurtosis and standard deviation features were extracted then given to ANN for interpolation.Interpolated results are stored in a database for retrieval.In the testing stage,the query image was inputted that is subjected to pre-processing,and feature extraction was then fed to the similarity measurement function.Thus,ANN helps to get similar images from the database.CBIR-SMANN have been implemented in the python tool and then evaluated for its performance.Results show that CBIR-SMANN exhibited a high recall value of 78%with a minimum retrieval time of 980 ms.This showed the supremacy of the proposed model was comparatively greater than the previous ones.展开更多
Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (...Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.展开更多
In interpretation of remote sensing images, it is possible that some images which are supplied by different sensors become incomprehensible. For better visual perception of these images, it is essential to operate ser...In interpretation of remote sensing images, it is possible that some images which are supplied by different sensors become incomprehensible. For better visual perception of these images, it is essential to operate series of pre-processing and elementary corrections and then operate a series of main processing steps for more precise analysis on the images. There are several approaches for processing which are depended on the type of remote sensing images. The discussed approach in this article, i.e. image fusion, is the use of natural colors of an optical image for adding color to a grayscale satellite image which gives us the ability for better observation of the HR image of OLI sensor of Landsat-8. This process with emphasis on details of fusion technique has previously been performed;however, we are going to apply the concept of the interpolation process. In fact, we see many important software tools such as ENVI and ERDAS as the most famous remote sensing image processing tools have only classical interpolation techniques (such as bi-linear (BL) and bi-cubic/cubic convolution (CC)). Therefore, ENVI- and ERDAS-based researches in image fusion area and even other fusion researches often don’t use new and better interpolators and are mainly concentrated on the fusion algorithm’s details for achieving a better quality, so we only focus on the interpolation impact on fusion quality in Landsat-8 multispectral images. The important feature of this approach is to use a statistical, adaptive, and edge-guided interpolation method for improving the color quality in the images in practice. Numerical simulations show selecting the suitable interpolation techniques in MRF-based images creates better quality than the classical interpolators.展开更多
Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.I...Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.展开更多
Based on compressive sensing and fractional discrete cosine transform(DCT)via polynomial interpolation(PI-FrDCT),an image encryption algorithm is proposed,in which the compression and encryption of an image are accomp...Based on compressive sensing and fractional discrete cosine transform(DCT)via polynomial interpolation(PI-FrDCT),an image encryption algorithm is proposed,in which the compression and encryption of an image are accomplished simultaneously.It can keep information secret more effectively with low data transmission.Three-dimensional piecewise and nonlinear chaotic maps are employed to obtain a generating sequence and the exclusive OR(XOR)matrix,which greatly enlarge the key space of the encryption system.Unlike many other fractional transforms,the output of PI-FrDCT is real,which facilitates the storage,transmission and display of the encrypted image.Due to the introduction of a plain-image-dependent disturbance factor,the initial values and system parameters of the encryption scheme are determined by cipher keys and plain-image.Thus,the proposed encryption scheme is very sensitive to the plain-image,which makes the encryption system more secure.Experimental results demonstrate the validity and the reliability of the proposed encryption algorithm.展开更多
The amount of image data generated in multimedia applications is ever increasing. The image compression plays vital role in multimedia applications. The ultimate aim of image compression is to reduce storage space wit...The amount of image data generated in multimedia applications is ever increasing. The image compression plays vital role in multimedia applications. The ultimate aim of image compression is to reduce storage space without degrading image quality. Compression is required whenever the data handled is huge they may be required to sent or transmitted and also stored. The New Edge Directed Interpolation (NEDI)-based lifting Discrete Wavelet Transfrom (DWT) scheme with modified Set Partitioning In Hierarchical Trees (MSPIHT) algorithm is proposed in this paper. The NEDI algorithm gives good visual quality image particularly at edges. The main objective of this paper is to be preserving the edges while performing image compression which is a challenging task. The NEDI with lifting DWT has achieved 99.18% energy level in the low frequency ranges which has 1.07% higher than 5/3 Wavelet decomposition and 0.94% higher than traditional DWT. To implement this NEDI with Lifting DWT along with MSPIHT algorithm which gives higher Peak Signal to Noise Ratio (PSNR) value and minimum Mean Square Error (MSE) and hence better image quality. The experimental results proved that the proposed method gives better PSNR value (39.40 dB for rate 0.9 bpp without arithmetic coding) and minimum MSE value is 7.4.展开更多
In this paper, ultrasonic C-scan test of spot welds for stainless steel has been studied. It is concluded that large scanning step length contributes to high testing efficiency, however, the low-resolution C-scan imag...In this paper, ultrasonic C-scan test of spot welds for stainless steel has been studied. It is concluded that large scanning step length contributes to high testing efficiency, however, the low-resolution C-scan image generated cannot be used to assess spot welding quality reliably. Based on bicubic image interpolation, the C-scan image in low resolution with the large step length 1 000 ~xm is subdivided and reconstructed. By this means, the C-scan image resolution is greatly enhanced and testing results obtained are satisfactory, realizing rapid assessment of spot welds. The results of rapid ultrasonic C-scan test fit the actual metallographic measured value well. Mean value of normal distribution of error statistics is O. 006 67, and the standard deviation is O. 087 11. Rapid ultrasonic C-scan test based on image interpolation is of high accuracy and excellent stability.展开更多
This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By u...This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.展开更多
A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this paper. The proposed prediction ...A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this paper. The proposed prediction methods estimate high-frequency wavelet coefficients of the original image based on the available low-frequency wavelet coefficients, so that the original image can be reconstructed by using the proposed prediction method. To further improve the reconstruction performance, we use polynomial curve fitting to build relationships between actual high-frequency wavelet coefficients and estimated high-frequency wavelet coefficients. Results of the proposed prediction algorithm for different wavelet transforms are compared to show the proposed prediction algorithm outperforms other methods.展开更多
To produce a smoother and more natural interpolated image, and to preserve and enhance original image details, we defined three perception-based local statistic parameters, namely contrast, noise visibility, and edge ...To produce a smoother and more natural interpolated image, and to preserve and enhance original image details, we defined three perception-based local statistic parameters, namely contrast, noise visibility, and edge strength based on three psychophysical principles, including Weber’s Law, Fechner’s Law, and Stevens’ Power Law, and integrated these parameters into a fuzzy logic system to set up an advanced image interpolation algorithm. Application of this algorithm to detect edge behaviors and local statistical information of images demonstrated better noise removal ability and obtained sharper edges than traditional image interpolation algorithems such as nearest neighbor, bilinear and bicubic interpolation methods.展开更多
This paper presents a hybrid image interpolation algorithm to keep details and edges simultaneously. The basic idea is to separate the unknown pixels into two classes and estimate them in different way. One class of u...This paper presents a hybrid image interpolation algorithm to keep details and edges simultaneously. The basic idea is to separate the unknown pixels into two classes and estimate them in different way. One class of unknown pixels is obtained via shifted linear interpolation and the other class through statistical signal processing method. The merit of this hybrid algorithm is that each unknown pixel can be estimated through original pixels simultaneously. Simulation results demonstrate that this hybrid interpolation algorithm improves the quality of the interpolated images over conventional interpolation methods.展开更多
In this paper,we propose a novel image interpolation method by using Gaussian-Sinc automatic interpolators with partition of unity property.A comprehensive comparison is made with classical image interpolation methods...In this paper,we propose a novel image interpolation method by using Gaussian-Sinc automatic interpolators with partition of unity property.A comprehensive comparison is made with classical image interpolation methods,such as the bicubic interpolation,Lanczos interpolation,cubic Schaum interpolation,cubic B-spline interpolation and cubic Moms interpolation.The experimental results show the effectiveness of the improved image interpolation method via some image quality metrics such as PSNR and SSIM.展开更多
Most image interpolation algorithms currently used suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This letter presents an adaptive feature preserving bidirectional flow ...Most image interpolation algorithms currently used suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This letter presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to enhance edges along the normal directions to the iso-phote lines (edges), while a normal diffusion is done to remove artifacts ('jaggies') along the tangent directions. In order to preserve image features such as edges, angles and textures, the nonlinear diffusion coefficients are locally adjusted according to the first order and the second order directional derivatives of the image. Experimental results on the Lena image demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.展开更多
<strong>Background:</strong> High-resolution medical images often need to be downsampled because of the memory limitations of the hardware used for machine learning. Although various image interpolation me...<strong>Background:</strong> High-resolution medical images often need to be downsampled because of the memory limitations of the hardware used for machine learning. Although various image interpolation methods are applicable to downsampling, the effect of data preprocessing on the learning performance of convolutional neural networks (CNNs) has not been fully investigated. <strong>Methods:</strong> In this study, five different pixel interpolation algorithms (nearest neighbor, bilinear, Hamming window, bicubic, and Lanczos interpolation) were used for image downsampling to investigate their effects on the prediction accuracy of a CNN. Chest X-ray images from the NIH public dataset were examined by downsampling 10 patterns. <strong>Results:</strong> The accuracy improved with a decreasing image size, and the best accuracy was achieved at 64 × 64 pixels. Among the interpolation methods, bicubic interpolation obtained the highest accuracy, followed by the Hamming window.展开更多
文摘Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.
基金Project supported by the Scientific Research Fund of Hunan Provincial Education Department,China (Grant No.21A0470)the Natural Science Foundation of Hunan Province,China (Grant No.2023JJ50268)+1 种基金the National Natural Science Foundation of China (Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project,China (Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.
基金The Natural Science Foundation of Anhui Province(No.1308085MF96)the Project of Chuzhou University(No.2012qd06,2011kj010B)+1 种基金the Scientific Research Foundation of Education Department of Anhui Province(No.KJ2014A186)the National Basic Research Program of China(973 Program)(No.2010CB732503)
文摘To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the phenomenon the classical correction algorithms and the Delaunay triangulation interpolation are analyzed.Then the algorithm procedure is explained using flow charts and illustrations. Finally experiments are described to demonstrate its effectiveness and feasibility. Experimental results demonstrate that the Delaunay triangulation interpolation can have the following effects.In the case of the same center the root mean square distances RMSD and standard deviation STD between the corrected image with Delaunay triangulation interpolation and the ideal image are 5.760 4 ×10 -14 and 5.354 2 ×10 -14 respectively.They increase to 1.790 3 2.388 8 2.338 8 and 1.262 0 1.268 1 1.202 6 after applying the quartic polynomial model L1 and model L2 to the distorted images respectively.The RMSDs and STDs between the corrected image with the Delaunay triangulation interpolation and the ideal image are 2.489 × 10 -13 and 2.449 8 ×10 -13 when their centers do not coincide. When the quartic polynomial model L1 and model L2 are applied to the distorted images they are 1.770 3 2.388 8 2.338 8 and 1.269 9 1.268 1 1.202 6 respectively.
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金the National Natural Science Foundation of China (Grant No. 6217070290)Shanghai Science and Technology Project (Grant Nos. 21JC1402800 and 20040501500)。
文摘As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images, with relatively little processing for color images. This paper proposes a quantum color image scaling scheme based on bilinear interpolation, which realizes the 2^(n_(1)) × 2^(n_(2)) quantum color image scaling. Firstly, the improved novel quantum representation of color digital images(INCQI) is employed to represent a 2^(n_(1)) × 2^(n_(2)) quantum color image, and the bilinear interpolation method for calculating pixel values of the interpolated image is presented. Then the quantum color image scaling-up and scaling-down circuits are designed by utilizing a series of quantum modules, and the complexity of the circuits is analyzed.Finally, the experimental simulation results of MATLAB based on the classical computer are given. The ultimate results demonstrate that the complexities of the scaling-up and scaling-down schemes are quadratic and linear, respectively, which are much lower than the cubic function and exponential function of other bilinear interpolation schemes.
文摘Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source image as SVMs input patterns. After the proper neighbor pixels region is selected, trained support vectors are obtained by training SVMs with local spatial properties that include the average of the neighbor pixels gray values and the gray value variations between neighbor pixels in the selected region. The support vector regression machines are employed to estimate the gray values of unknown pixels with the neighbor pixels and local spatial properties information. Some interpolation experiments show that the proposed scheme is superior to the linear, cubic, neural network and other SVMs based interpolation approaches.
文摘In content-based image retrieval(CBIR),primitive image signatures are critical because they represent the visual characteristics.Image signatures,which are algorithmically descriptive and accurately recognized visual components,are used to appropriately index and retrieve comparable results.To differentiate an image in the category of qualifying contender,feature vectors must have image information's like colour,objects,shape,spatial viewpoints.Previous methods such as sketch-based image retrieval by salient contour(SBIR)and greedy learning of deep Boltzmann machine(GDBM)used spatial information to distinguish between image categories.This requires interest points and also feature analysis emerged image detection problems.Thus,a proposed model to overcome this issue and predict the repeating pattern as well as series of pixels that conclude similarity has been necessary.In this study,a technique called CBIR-similarity measure via artificial neural network interpolation(CBIR-SMANN)has been presented.By collecting datasets,the images are resized then subject to Gaussian filtering in the pre-processing stage,then by permitting them to the Hessian detector,the interesting points are gathered.Based on Skewness,mean,kurtosis and standard deviation features were extracted then given to ANN for interpolation.Interpolated results are stored in a database for retrieval.In the testing stage,the query image was inputted that is subjected to pre-processing,and feature extraction was then fed to the similarity measurement function.Thus,ANN helps to get similar images from the database.CBIR-SMANN have been implemented in the python tool and then evaluated for its performance.Results show that CBIR-SMANN exhibited a high recall value of 78%with a minimum retrieval time of 980 ms.This showed the supremacy of the proposed model was comparatively greater than the previous ones.
基金financially supported by the National Natural Science Foundation of China(11202081,11272124,and 11472109)the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17)
文摘Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.
文摘In interpretation of remote sensing images, it is possible that some images which are supplied by different sensors become incomprehensible. For better visual perception of these images, it is essential to operate series of pre-processing and elementary corrections and then operate a series of main processing steps for more precise analysis on the images. There are several approaches for processing which are depended on the type of remote sensing images. The discussed approach in this article, i.e. image fusion, is the use of natural colors of an optical image for adding color to a grayscale satellite image which gives us the ability for better observation of the HR image of OLI sensor of Landsat-8. This process with emphasis on details of fusion technique has previously been performed;however, we are going to apply the concept of the interpolation process. In fact, we see many important software tools such as ENVI and ERDAS as the most famous remote sensing image processing tools have only classical interpolation techniques (such as bi-linear (BL) and bi-cubic/cubic convolution (CC)). Therefore, ENVI- and ERDAS-based researches in image fusion area and even other fusion researches often don’t use new and better interpolators and are mainly concentrated on the fusion algorithm’s details for achieving a better quality, so we only focus on the interpolation impact on fusion quality in Landsat-8 multispectral images. The important feature of this approach is to use a statistical, adaptive, and edge-guided interpolation method for improving the color quality in the images in practice. Numerical simulations show selecting the suitable interpolation techniques in MRF-based images creates better quality than the classical interpolators.
基金supported by the National Natural Science Foundation of China(61871146).
文摘Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.
基金supported by National Natural Science Foundation of China(Nos.61662047 and 61462061).
文摘Based on compressive sensing and fractional discrete cosine transform(DCT)via polynomial interpolation(PI-FrDCT),an image encryption algorithm is proposed,in which the compression and encryption of an image are accomplished simultaneously.It can keep information secret more effectively with low data transmission.Three-dimensional piecewise and nonlinear chaotic maps are employed to obtain a generating sequence and the exclusive OR(XOR)matrix,which greatly enlarge the key space of the encryption system.Unlike many other fractional transforms,the output of PI-FrDCT is real,which facilitates the storage,transmission and display of the encrypted image.Due to the introduction of a plain-image-dependent disturbance factor,the initial values and system parameters of the encryption scheme are determined by cipher keys and plain-image.Thus,the proposed encryption scheme is very sensitive to the plain-image,which makes the encryption system more secure.Experimental results demonstrate the validity and the reliability of the proposed encryption algorithm.
文摘The amount of image data generated in multimedia applications is ever increasing. The image compression plays vital role in multimedia applications. The ultimate aim of image compression is to reduce storage space without degrading image quality. Compression is required whenever the data handled is huge they may be required to sent or transmitted and also stored. The New Edge Directed Interpolation (NEDI)-based lifting Discrete Wavelet Transfrom (DWT) scheme with modified Set Partitioning In Hierarchical Trees (MSPIHT) algorithm is proposed in this paper. The NEDI algorithm gives good visual quality image particularly at edges. The main objective of this paper is to be preserving the edges while performing image compression which is a challenging task. The NEDI with lifting DWT has achieved 99.18% energy level in the low frequency ranges which has 1.07% higher than 5/3 Wavelet decomposition and 0.94% higher than traditional DWT. To implement this NEDI with Lifting DWT along with MSPIHT algorithm which gives higher Peak Signal to Noise Ratio (PSNR) value and minimum Mean Square Error (MSE) and hence better image quality. The experimental results proved that the proposed method gives better PSNR value (39.40 dB for rate 0.9 bpp without arithmetic coding) and minimum MSE value is 7.4.
文摘In this paper, ultrasonic C-scan test of spot welds for stainless steel has been studied. It is concluded that large scanning step length contributes to high testing efficiency, however, the low-resolution C-scan image generated cannot be used to assess spot welding quality reliably. Based on bicubic image interpolation, the C-scan image in low resolution with the large step length 1 000 ~xm is subdivided and reconstructed. By this means, the C-scan image resolution is greatly enhanced and testing results obtained are satisfactory, realizing rapid assessment of spot welds. The results of rapid ultrasonic C-scan test fit the actual metallographic measured value well. Mean value of normal distribution of error statistics is O. 006 67, and the standard deviation is O. 087 11. Rapid ultrasonic C-scan test based on image interpolation is of high accuracy and excellent stability.
文摘This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.
文摘A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this paper. The proposed prediction methods estimate high-frequency wavelet coefficients of the original image based on the available low-frequency wavelet coefficients, so that the original image can be reconstructed by using the proposed prediction method. To further improve the reconstruction performance, we use polynomial curve fitting to build relationships between actual high-frequency wavelet coefficients and estimated high-frequency wavelet coefficients. Results of the proposed prediction algorithm for different wavelet transforms are compared to show the proposed prediction algorithm outperforms other methods.
基金Funded by Key Research Project of Liaoning Province Bureau of Science and Technology under the grant No. 2008217004China's Post-Doctoral Science Fund under the grant No. 200704111071
文摘To produce a smoother and more natural interpolated image, and to preserve and enhance original image details, we defined three perception-based local statistic parameters, namely contrast, noise visibility, and edge strength based on three psychophysical principles, including Weber’s Law, Fechner’s Law, and Stevens’ Power Law, and integrated these parameters into a fuzzy logic system to set up an advanced image interpolation algorithm. Application of this algorithm to detect edge behaviors and local statistical information of images demonstrated better noise removal ability and obtained sharper edges than traditional image interpolation algorithems such as nearest neighbor, bilinear and bicubic interpolation methods.
基金Supported by the National Natural Science Foundation of China (No.60472021).
文摘This paper presents a hybrid image interpolation algorithm to keep details and edges simultaneously. The basic idea is to separate the unknown pixels into two classes and estimate them in different way. One class of unknown pixels is obtained via shifted linear interpolation and the other class through statistical signal processing method. The merit of this hybrid algorithm is that each unknown pixel can be estimated through original pixels simultaneously. Simulation results demonstrate that this hybrid interpolation algorithm improves the quality of the interpolated images over conventional interpolation methods.
基金This research was supported by the National Nature Science Foundation of China under Grant Nos.61772163,61761136010Zhejiang Provincial Natural Science Foundation of China under Grant No.LR16F020003+1 种基金Zhejiang Provincial Science and Technology Program in China(2018C01030)Scientific Research Fund of Hunan Provincial Education Department(No.15A110).
文摘In this paper,we propose a novel image interpolation method by using Gaussian-Sinc automatic interpolators with partition of unity property.A comprehensive comparison is made with classical image interpolation methods,such as the bicubic interpolation,Lanczos interpolation,cubic Schaum interpolation,cubic B-spline interpolation and cubic Moms interpolation.The experimental results show the effectiveness of the improved image interpolation method via some image quality metrics such as PSNR and SSIM.
基金Supported by the National Natural Science Foundation of China(No.60472033)the Key Laboratory Project of Information Science & Engineering of Railway of National Ministry of Railways, China (No.tdxx0510)the Technological Innovation Fund of Excellent Doctorial Candidate of Beijing Jiaotong University,China(No.48007)
文摘Most image interpolation algorithms currently used suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This letter presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to enhance edges along the normal directions to the iso-phote lines (edges), while a normal diffusion is done to remove artifacts ('jaggies') along the tangent directions. In order to preserve image features such as edges, angles and textures, the nonlinear diffusion coefficients are locally adjusted according to the first order and the second order directional derivatives of the image. Experimental results on the Lena image demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
文摘<strong>Background:</strong> High-resolution medical images often need to be downsampled because of the memory limitations of the hardware used for machine learning. Although various image interpolation methods are applicable to downsampling, the effect of data preprocessing on the learning performance of convolutional neural networks (CNNs) has not been fully investigated. <strong>Methods:</strong> In this study, five different pixel interpolation algorithms (nearest neighbor, bilinear, Hamming window, bicubic, and Lanczos interpolation) were used for image downsampling to investigate their effects on the prediction accuracy of a CNN. Chest X-ray images from the NIH public dataset were examined by downsampling 10 patterns. <strong>Results:</strong> The accuracy improved with a decreasing image size, and the best accuracy was achieved at 64 × 64 pixels. Among the interpolation methods, bicubic interpolation obtained the highest accuracy, followed by the Hamming window.