We discovered two distinctive features in the mechanical properties of extruded Mg alloys containing a long-period stacking ordered(LPSO)phase,which are highly desirable for a new class of high-strength,lightweight ma...We discovered two distinctive features in the mechanical properties of extruded Mg alloys containing a long-period stacking ordered(LPSO)phase,which are highly desirable for a new class of high-strength,lightweight materials.First,the Mg/LPSO-extruded alloy shows greater elongation compared to other Mg solid-solution-extruded alloys when a certain high strength is required.Second,the simultaneous achievement of high strength and large elongation in the Mg/LPSO-extruded alloy enhances with a reduction in extrusion speed.In this study,the physical origins of these features were examined,focusing on how changes in the microstructure affect the mechanical properties of the extruded alloys.Our findings clarify that the LPSO phase contributes not only to increased strength but also to enhanced elongation through an increase in the work-hardening rate,a mechanism we termed aanisotropic mechanical property-induced ductilizationo(AMID).Until now,most efforts to improve the ductility of Mg materials have focused on achieving aisotropic mechanical propertieso via grain refinement.Based on our results,we propose an entirely opposite approach:increasing the elongation of Mg alloy by locally enhancing theiraanisotropic mechanical propertieso through the AMID mechanism.Computational analysis further suggests that reducing the diameter of Mg-worked grains should effectively improving elongation in Mg/LPSO alloys with a high volume fraction of Mg-worked grains.展开更多
Microbial consortia that catalyze chain elongation processes have been enriched using different selection strategies,for which the electron donor is an essential one.Propanol is an extraordinarily promising electron d...Microbial consortia that catalyze chain elongation processes have been enriched using different selection strategies,for which the electron donor is an essential one.Propanol is an extraordinarily promising electron donor because it can be generated from renewable resources,including lignocellulosic biomass and protein wastes.Here,propanol was proven in detail to be an efficient electron donor,enhancing the production of odd medium-chain carboxylates during chain elongation.By exploring various electron acceptors,reactor conditions,and electron donor/electron acceptor mol ratios,our study highlights that acetate is the most suitable electron acceptor for the production of both odd-and even-chain carboxylates.The optimal conditions for propanol-based chain elongation were 30℃ and pH 6,achieving 82.8%selectivity for odd-chain carboxylates.Another critical insight from our work is that a propanol/acetate mol ratio of 1:1 can minimize the inhibitory effect of propanol and maximize the yield of medium-chain carboxylates,with the highest concentration of n-heptanoate reaching 124.5 mmol C/L.This was further illustrated by 16S rRNA amplicon sequencing,which elucidated that the community composition and keystone species in a propanol-based reactor closely resembled that of the ethanol one.The dominant phylum of the propanol-based reactor,Firmicutes showed a significant positive correlation with the concentrations of n-caproate and n-valerate.Additionally,the co-occurrence of Clostridium sensu stricto 12 and Oscillibacter,known as typical chain elongators,was identified within the propanol-based reactor.These findings enhance our understanding of propanolbased chain elongation,offer guiding principles for reactor microbiota assembly,and support efficient odd medium-chain carboxylate production.展开更多
Microbial chain elongation(CE),utilizing anaerobic fermentation for the synthesis of high-value medium chain fatty acids(MCFAs),merges as a promising strategy in resource sustainability.Recently,it has pivoted that th...Microbial chain elongation(CE),utilizing anaerobic fermentation for the synthesis of high-value medium chain fatty acids(MCFAs),merges as a promising strategy in resource sustainability.Recently,it has pivoted that the use of different types of additives or accelerantstowards enhancing the products yield and fermentation quality has got much attention,with carbon-based materials emerging as vital facilitators.Based on bibliometrics insights,this paper firstly commences with a comprehensive review of the past two decades’progress in applying carbon-based materials within anaerobic fermentation contexts.Subsequently,the recent advancements made by different research groups in order to enhance the performance of CE systemperformance are reviewed,with particular focus on the application,impact,and underlying mechanisms of carbon-based materials in expediting MCFAs biosynthesis via CE.Finally,the future research direction is prospected,aiming to inform innovative material design and sophisticated technological applications,as well as provide a reference for improving the efficiency of anaerobic fermentation of MCFAs using carbon-based material,thereby contributing to the broader discourse on enhancing sustainability and efficiency in bio-based processes.展开更多
Hypocotyl length is regarded to be a crucial seedling trait,influencing many subsequent plant development processes.However,little is known about this trait in Brassica campestris syn.Brasscia rapa.Here,we performed a...Hypocotyl length is regarded to be a crucial seedling trait,influencing many subsequent plant development processes.However,little is known about this trait in Brassica campestris syn.Brasscia rapa.Here,we performed a comparative observation on the early hypocotyl development between two cultivars,‘SZQ’belonging to pak-choi(B.campestris ssp.chinensis var.communis)with longer hypocotyls,and‘WTC’belonging to Tacai(B.campestris L.ssp.chinensis var.rosularis)with shortter hypocotyls,and found that the difference in auxin biosynthesis might contribute to the varied hypocotyl phenotype between these two cultivars.By applying GWAS analysis using a total of 226 B.campestris accessions,we identified that the AT-Hook motif nuclear localized(AHL)gene BcAHL24-MF1 contributed to the natural variation in hypocotyl length.Functional variation of BcAHL24-MF1 was attributed to four haplotypes featuring four SNPs within the promoter region,of which Hap I accumulated more transcripts with shorter hypocotyls.Constitutive overexpression of BcAHL24-MF1 in B.campestris caused decreased hypocotyl length under light circumstances and even constant darkness,as BcAHL24-MF1 repressed the PIFmediated transcriptional activation of auxin biosynthesis genes BcYUC6-MF2 and BcYUC8-LF.Our research uncovered the important role of BcAHL24-MF1 in regulating light-triggered inhibition of hypocotyl elongation,therefore presenting a valuable genetic target for crop breeding.展开更多
[Objective] The aim of this study was to prepare the recombination protein of rubber elongation factor and its polyclonal antibodies.[Method] The encoding gene of rubber elongation factor(REF)was amplified by RT-PCR,a...[Objective] The aim of this study was to prepare the recombination protein of rubber elongation factor and its polyclonal antibodies.[Method] The encoding gene of rubber elongation factor(REF)was amplified by RT-PCR,and cloned into the prokaryotic expression vector pDEST17 to transform into Escherichia coil BI2I-AI.The recombinant protein induced by L-Arabinose was purified by the affinity chromatography.As the immunogen,the recombination protein was used to immunize mice for preparing polyclonal antibodies,while ELISA and Western blot hybridization were used to detect the titers and specificity.[Result] The purified recombination protein of REF with high expression was used to immunize house mice for preparing polyclonal antibodies with high titer and specificity.The western blot hybridization showed that the antibody could recognize the natural REF from latex.[Conclusion] The recombination protein of REF was successfully obtained and the mouse anti REF antibody with high titer and specificity was prepared,which lays a basis for further studies on biological functions of rubber elongation factor and other membrane proteins in rubber particles.展开更多
Differences of gene expression between salinity_stressed and control rice ( Oryza sativa L. ssp. indica ) cultivar “Zhaiyeqing 8' were compared using differential display PCR (DD_PCR) technique. Sequence an...Differences of gene expression between salinity_stressed and control rice ( Oryza sativa L. ssp. indica ) cultivar “Zhaiyeqing 8' were compared using differential display PCR (DD_PCR) technique. Sequence analysis of one salt_inducible cDNA clone revealed that this clone represented a new member of rice translation elongation factor 1A (eEF1A) gene family and was tentatively named REF1A. Northern blot hybridization using REF1A fragment as a probe was performed to investigate the expression of rice translation elongation factor 1A gene in response to various environmental factors. It was observed that expression of the eEF1A gene in rice shoots was dramatically induced by salinity stress or exogenous application of abscisic acid (ABA). The induction of this gene by ABA stress occurred more quickly than that by salinity stress. In addition, expression of rice translation elongation factor 1A gene was also induced by drought (15% PEG6000), cold (4 ℃) or heat_shock (37 ℃) stresses. The results suggested that the induction of translation elongation factor 1A gene expression by environmental stresses might reflect the general adaptive response of rice plants to the adverse circumstances.展开更多
[Objective]The research aimed to discuss the tolerance of Salix matsudana to single or compound heavy metals and provide theoretical basis for renovating polluted soil by heavy metals with woody plants.[Method]Using r...[Objective]The research aimed to discuss the tolerance of Salix matsudana to single or compound heavy metals and provide theoretical basis for renovating polluted soil by heavy metals with woody plants.[Method]Using root elongation method,the effects of heavy metal Cu^2+,Pb^2+,Zn^2+ and their mixed solution on the adventitious roots growth of S.matsudana cuttings were studied.[Result]The adventitious roots growth of S.matsudana cuttings was obviously affected by different concentrations of heavy metals solution.Adventitious roots of S.matsudana cuttings could not grow while the concentration of Cu^2+ was higher than 15 mg/L,the mixture solution concentration was higher than 20 mg/L and Zn^2+ concentration was higher than 30 mg/L.When the solution concentration reached 40 mg/L,adventitious roots of S.matsudana cuttings could grow only in Pb^2+ treatment group.With the increasing of the solution concentration,the number of adventitious roots of S.matsudana cuttings gradually decreased.In 5 mg/L Zn^2+ treatment group,the number of adventitious roots of S.matsudana cuttings was the most,the longest root length and average root length were the longest and the rooting rate was the highest.[Conclusion]The tolerance of S.matsudana to Pb^2+ was strongest and its tolerance to Cu^2+ was the weakest.The tolerance order of S.matsudana to three kinds of heavy metals and their mixed solution was as following:Pb^2+〉Zn^2+〉Cu^2++Pb^2++Zn^2+〉Cu^2+.展开更多
A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for th...A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition. A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition.展开更多
Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell w...Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell wall synthesis stages, we compared the respective transcriptomes and metabolite profiles. Comparative analysis of transcriptomes by cDNA array identified 633 genes that were differentially regulated during fiber development. Principal component analysis (PCA) using expressed genes as variables divided fiber samples into four groups, which are diagnostic of developmental stages. Similar grouping results are also found if we use non-polar or polar metabolites as variables for PCA of developing fibers. Auxin signaling, wall-loosening and lipid metabolism are highly active during fiber elongation, whereas cellulose biosynthesis is predominant and many other metabolic pathways are downregulated at the secondary cell wall synthesis stage. Transcript and metabolite profiles and enzyme activities are consistent in demonstrating a specialization process of cotton fiber development toward cellulose synthesis. These data demonstrate that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles. During the secondary cell wall synthesis stage, metabolic pathways are streamed into cellulose synthesis.展开更多
AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eE...AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.展开更多
A study was conducted in four compartments of a polycarbonate greenhouse at Gainesville,FL, USA to investigate how a soybean(Glycine max L. Merr.) cultivar, Maverick(maturity group III, indeterminate), responded to th...A study was conducted in four compartments of a polycarbonate greenhouse at Gainesville,FL, USA to investigate how a soybean(Glycine max L. Merr.) cultivar, Maverick(maturity group III, indeterminate), responded to three elevated temperatures, ELT,(day/night of 34/26 °C, 38/30 °C, and 42/34 °C) in comparison to a control growth temperature(30/22 °C).Carbon dioxide(CO_2) concentration was maintained at 700 μmol mol^(-1) in each compartment by a processor controlled air-sampling and CO_2-injection system. Three sequential experiments were conducted at different times of year(summer, autumn, and early spring)to investigate the effect of intensity, timing, and duration of ELT on soybean node number,internode elongation, mainstem length, and number of pods set per plant. At the control temperature, the soybean plants grown in the polycarbonate greenhouse were taller than field-grown plants. When plants were grown under continuous ELT applied soon after sowing or at initial flowering, the number of nodes increased with increasing ELT intensity,whereas the length of individual internodes decreased. When ELT treatment was applied during the beginning of flowering stage(R1–R2) or earlier, more nodes were produced and the length of affected internodes was decreased. When the ELT was imposed later at reproductive stage R5+ just before the beginning of seed filling, effects on node numbers and internode lengths were negligible. Short-term(10-day) duration of ELT applied at four stages from V3 to R5+ did not significantly affect final mean numbers of nodes or mean mainstem lengths. Possible mechanisms of elevated temperature effects on soybean internode elongation and node number(internode number) are discussed. Total pod numbers per plant increased linearly with mainstem node numbers and mainstem length.Furthermore, total pod numbers per plant were greatest at 34/26 °C rather than at the control temperature of 30/22 °C(and remained high at 38/30 °C). Mild increases in temperature might not threaten, but actually increase, yields of soybean in northerly zones where this crop is currently grown at slightly suboptimal temperatures. However, a sustained increase in ambient temperature would likely threaten soybean yields.展开更多
Production of biochemicals from waste streams has been attracting increasing worldwide interest to achieve climate protection goals.Chain elongation(CE)for production of mediumchain carboxylic acids(MCCAs,especially c...Production of biochemicals from waste streams has been attracting increasing worldwide interest to achieve climate protection goals.Chain elongation(CE)for production of mediumchain carboxylic acids(MCCAs,especially caproate,enanthate and caprylate)from diverse biowaste has emerged as a potential economic and environmental technology for a sustainable society.The present mini review summarizes the research utilizing various synthetic or real waste-derived substrates available for MCCA production.Additionally,the microbial characteristics of the CE process are surveyed and discussed.Considering that a large proportion of recalcitrantly biodegradable biowaste and residues cannot be further utilized by CE systems and remain to be treated and disposed,we propose here a loop concept of bioconversion of biowaste to MCCAs making full use of the biowaste with zero emission.This could make possible an alternative technology for synthesis of value-added products from a wide range of biowaste,or even non-biodegradable waste(such as,plastics and rubbers).Meanwhile,the remaining scientific questions,unsolved problems,application potential and possible developments for this technology are discussed.展开更多
The testing conditions of a fibre bundle tensile tester (TENSOR) are elongation speed (ES), gauge length (GL), pretension, jaw pressure, environmental temperature and relative humidity, instrument linearity and sensit...The testing conditions of a fibre bundle tensile tester (TENSOR) are elongation speed (ES), gauge length (GL), pretension, jaw pressure, environmental temperature and relative humidity, instrument linearity and sensitivity. The effects on fibre-bundle tensile properties at different GL and ES have been discussed in detail and compared with Peirce’s theories on the weaklinks and the breaking time effect. The experimental results indicate that the tensile properties of fibre bundles are strongly affected by GL and vary with different GL. The reasonable GL should be 5 15 mm rather than 3.2 mm for wool bundle measurements. The ES ranging from 20 mm/min to 40 mm/min is beneficial for obtaining comparatively stable and accurate tensile values, whereas 20 mm/min used in current testing for wool fibre bundles is at the lower limit of the suggested range. For bundle modulus measurement, the sampling interval must be selected appropriately. The new calculation of the sampling interval has been established.展开更多
Short basal internodes are important for lodging resistance of rice(Oryza sativa L.).Several canopy indices affect the elongation of basal internodes,but uncertainty as to the key factors determining elongation of bas...Short basal internodes are important for lodging resistance of rice(Oryza sativa L.).Several canopy indices affect the elongation of basal internodes,but uncertainty as to the key factors determining elongation of basal internodes persists.The objectives of this study were(1)to identify key factors affecting the elongation of basal internodes and(2)to establish a quantitative relationship between basal internode length and canopy indices.An inbred rice cultivar,Yinjingruanzhan,was grown in two split-plot field experiments with three N rates(0,75,and 150 kg N ha−1 in early season and 0,90,and 180 kg N ha−1 in late season)as main plots,three seedling densities(16.7,75.0,and 187.5 seedlings m−2)as subplots,and three replications in the 2015 early and late seasons in Guangzhou,China.Light intensity at base of canopy(Lb),light quality as determined from red/far-red light ratio(R/FR),light transmission ratio(LTR),leaf area index(LAI),leaf N concentration(NLV)and final length of second internode(counted from soil surface upward)(FIL)were recorded.Higher N rate and seedling density resulted in significantly longer FIL.FIL was negatively correlated with Lb,LTR,and R/FR(P<0.01)and positively correlated with LAI(P<0.01),but not correlated with NLV(P>0.05).Stepwise linear regression analysis showed that FIL was strongly associated with Lb and LAI(R2=0.82).Heavy N application to pot-grown rice at the beginning of first internode elongation did not change FIL.We conclude that FIL is determined mainly by Lb and LAI at jointing stage.NLV has no direct effect on the elongation of basal internodes.N application indirectly affects FIL by changing LAI and light conditions in the rice canopy.Reducing LAI and improving canopy light transmission at jointing stage can shorten the basal internodes and increase the lodging resistance of rice.展开更多
To explore the causes of the postoperative complications of the penile elongation and the measures to prevent them in order to raise the success rate of the penile elongation. 1000 patients who had received the penile...To explore the causes of the postoperative complications of the penile elongation and the measures to prevent them in order to raise the success rate of the penile elongation. 1000 patients who had received the penile elongation were reviewed and analyzed for the causes of postoperative complications, and the measures of prevention and treatment were discussed. Our results showed that, of the 1000 cases, 64 had the postoperative complications, including 20 cases of edema of prepuce, 15 cases of flap necrosis, 12 hematoma, 9 infections, and 8 cases of fat and clumsy penis. It is concluded that correct operative manipulation, strict aseptic measures and necessary postoperative care and management could avoid or reduce the postoperative complications. When complications happened , a satisfactory result can be achieved with timely and correct treatment in the majority of the patients.展开更多
This paper employs simple rolling process plus annealing to refine the grain size of magnesium alloy ZK60. This goal is effectively achieved, obtaining grains as fine as -3.7 um. Such a specimen shows an elongation of...This paper employs simple rolling process plus annealing to refine the grain size of magnesium alloy ZK60. This goal is effectively achieved, obtaining grains as fine as -3.7 um. Such a specimen shows an elongation of 642%, and its ultimate fracture surface exhibits intergranular separation and significant grain growth. Additionally, the effects of the specimen's geometry and tensile test axis with respect to the rolling direction on superplastic elongation is studied, which has not been done before.展开更多
The tumor selective over-expression of the human Hsp70 gene has been well documented in human tumors,linked to the poor prognosis,being refractory to chemo-and radio-therapies as well as the advanced stage of tumorous...The tumor selective over-expression of the human Hsp70 gene has been well documented in human tumors,linked to the poor prognosis,being refractory to chemo-and radio-therapies as well as the advanced stage of tumorous lesions in particular.However,both the nature and details of aberrations in the control of the Hsp70 expression in tumor remain enigmatic.By comparing various upstream segments of the Hsp70 gene for each''s ability to drive the luciferase reporter genes in the context of the tumor cell lines varying in their p53 status and an immortal normal liver cell line,we demonstrated in a great detail the defects in the control mechanisms at the both initiation and elongation levels of transcription being instrumental to the tumor selective profile of its expression.Our data should not only offer new insights into our understanding of the tumor specific over-expression of the human Hsp70 gene,but also paved the way for the rational utilization of the tumor selective mechanism with the Hsp70 at the central stage fortargeting the therapeutic gene expression to human tumors.展开更多
Objective To study the alternative expression and sequence of human elongation factor-1δ (human EF-1δ p31) during malignant transformation of human bronchial epithelial cells induced by cadmium chloride (CdCl2) ...Objective To study the alternative expression and sequence of human elongation factor-1δ (human EF-1δ p31) during malignant transformation of human bronchial epithelial cells induced by cadmium chloride (CdCl2) and its possible mechanism. Methods Total RNA was isolated at different stages of transformed human bronchial epithelial cells (16HBE) induced by CdCl2 at a concentration of 5.0 μM. Special primers and probe for human EF-1δ p31 were designed and expression of human EF-18 mRNA from different cell lines was detected with fluorescent quantitative PCR technique. EF-18 cDNA from different cell lines was purified and cloned into pMD 18-T vector followed by confirming and sequencing analysis. Results The expressions of human EF-1δ p31 at different stages of 16HBE cells transformed by CdCl2 was elevated (P〈0.01 or P〈0.05). Compared with their corresponding non-transformed ceils, the overexpression level of EF-15 p31 was averagely increased 2.9 folds in Cd-pretransformed cells, 4.3 folds in Cd-transformed ceils and 7.2 folds in Cd-tumorigenic cells. No change was found in the sequence of overexpressed EF-1δ p31 at different stages of 16HBE cells transformed by CdCl2. Conclusion Overexpression of human EF-1δ p31 is positively correlated with malignant transformation of 16HBE cells induced by CdCl2, but is not correlated with DNA mutations.展开更多
Seeds of soybeans and mung beans were soaked into five different concentrations (0, 0.05, 0.10, 0.20, 0.30 mg/L) of natural brassinolide ( NBR ) solution. According to the results, natural brassinolide treatment c...Seeds of soybeans and mung beans were soaked into five different concentrations (0, 0.05, 0.10, 0.20, 0.30 mg/L) of natural brassinolide ( NBR ) solution. According to the results, natural brassinolide treatment could improve seed germination rate and hypocotyl-radicle ratio of soybeans and mung beans and promote the growth of sprouts. To be specific, seed germination rate of soybeans reached the highest in 0.05 mg/L natural brassinolide treatment, which was im- proved by 25.0 percentage points compared with the control group, and the sprout length was improved by 4.33 em; 0.30 mg/L natural brassinolide exhibited the most significant promotion effect on seed germination and sprout growth of mung beans, seed germination rate was improved by 18.3 percentage points and sprout length was improved by 7.29 cm; hypocotyl-radiele ratio of soybean and mung bean sprouts reached the highest (2.96, 1.43 ) in 0.05 mg/L natural brassinolide treatment.展开更多
基金supported by the Japan Science and Technology Agency(JST),CREST(grant number JPMJCR2094)。
文摘We discovered two distinctive features in the mechanical properties of extruded Mg alloys containing a long-period stacking ordered(LPSO)phase,which are highly desirable for a new class of high-strength,lightweight materials.First,the Mg/LPSO-extruded alloy shows greater elongation compared to other Mg solid-solution-extruded alloys when a certain high strength is required.Second,the simultaneous achievement of high strength and large elongation in the Mg/LPSO-extruded alloy enhances with a reduction in extrusion speed.In this study,the physical origins of these features were examined,focusing on how changes in the microstructure affect the mechanical properties of the extruded alloys.Our findings clarify that the LPSO phase contributes not only to increased strength but also to enhanced elongation through an increase in the work-hardening rate,a mechanism we termed aanisotropic mechanical property-induced ductilizationo(AMID).Until now,most efforts to improve the ductility of Mg materials have focused on achieving aisotropic mechanical propertieso via grain refinement.Based on our results,we propose an entirely opposite approach:increasing the elongation of Mg alloy by locally enhancing theiraanisotropic mechanical propertieso through the AMID mechanism.Computational analysis further suggests that reducing the diameter of Mg-worked grains should effectively improving elongation in Mg/LPSO alloys with a high volume fraction of Mg-worked grains.
基金supported by the National Key R&D Program of China(No.2022YFC2105301)the National Natural Science Foundation of China(No.52270096).
文摘Microbial consortia that catalyze chain elongation processes have been enriched using different selection strategies,for which the electron donor is an essential one.Propanol is an extraordinarily promising electron donor because it can be generated from renewable resources,including lignocellulosic biomass and protein wastes.Here,propanol was proven in detail to be an efficient electron donor,enhancing the production of odd medium-chain carboxylates during chain elongation.By exploring various electron acceptors,reactor conditions,and electron donor/electron acceptor mol ratios,our study highlights that acetate is the most suitable electron acceptor for the production of both odd-and even-chain carboxylates.The optimal conditions for propanol-based chain elongation were 30℃ and pH 6,achieving 82.8%selectivity for odd-chain carboxylates.Another critical insight from our work is that a propanol/acetate mol ratio of 1:1 can minimize the inhibitory effect of propanol and maximize the yield of medium-chain carboxylates,with the highest concentration of n-heptanoate reaching 124.5 mmol C/L.This was further illustrated by 16S rRNA amplicon sequencing,which elucidated that the community composition and keystone species in a propanol-based reactor closely resembled that of the ethanol one.The dominant phylum of the propanol-based reactor,Firmicutes showed a significant positive correlation with the concentrations of n-caproate and n-valerate.Additionally,the co-occurrence of Clostridium sensu stricto 12 and Oscillibacter,known as typical chain elongators,was identified within the propanol-based reactor.These findings enhance our understanding of propanolbased chain elongation,offer guiding principles for reactor microbiota assembly,and support efficient odd medium-chain carboxylate production.
基金financially supported by the National Key R&D Program of China(No.2019YFC1906600)the National Natural Science Foundation of China(No.52000132).
文摘Microbial chain elongation(CE),utilizing anaerobic fermentation for the synthesis of high-value medium chain fatty acids(MCFAs),merges as a promising strategy in resource sustainability.Recently,it has pivoted that the use of different types of additives or accelerantstowards enhancing the products yield and fermentation quality has got much attention,with carbon-based materials emerging as vital facilitators.Based on bibliometrics insights,this paper firstly commences with a comprehensive review of the past two decades’progress in applying carbon-based materials within anaerobic fermentation contexts.Subsequently,the recent advancements made by different research groups in order to enhance the performance of CE systemperformance are reviewed,with particular focus on the application,impact,and underlying mechanisms of carbon-based materials in expediting MCFAs biosynthesis via CE.Finally,the future research direction is prospected,aiming to inform innovative material design and sophisticated technological applications,as well as provide a reference for improving the efficiency of anaerobic fermentation of MCFAs using carbon-based material,thereby contributing to the broader discourse on enhancing sustainability and efficiency in bio-based processes.
基金supported by grants from the Key R and D Program of Zhejiang(Grant Nos.2022C02032 and 2022C02030)the SanNong JiuFang Science and Technology Cooperation Project of Zhejiang Province(Grant No.2023SNJF008)+1 种基金the Grand Science and Technology Special Project of Zhejiang Province(Grant No.2021C02065)the Science and Technology Plan Project of Jiaxing(Grant No.2023AZ11002).
文摘Hypocotyl length is regarded to be a crucial seedling trait,influencing many subsequent plant development processes.However,little is known about this trait in Brassica campestris syn.Brasscia rapa.Here,we performed a comparative observation on the early hypocotyl development between two cultivars,‘SZQ’belonging to pak-choi(B.campestris ssp.chinensis var.communis)with longer hypocotyls,and‘WTC’belonging to Tacai(B.campestris L.ssp.chinensis var.rosularis)with shortter hypocotyls,and found that the difference in auxin biosynthesis might contribute to the varied hypocotyl phenotype between these two cultivars.By applying GWAS analysis using a total of 226 B.campestris accessions,we identified that the AT-Hook motif nuclear localized(AHL)gene BcAHL24-MF1 contributed to the natural variation in hypocotyl length.Functional variation of BcAHL24-MF1 was attributed to four haplotypes featuring four SNPs within the promoter region,of which Hap I accumulated more transcripts with shorter hypocotyls.Constitutive overexpression of BcAHL24-MF1 in B.campestris caused decreased hypocotyl length under light circumstances and even constant darkness,as BcAHL24-MF1 repressed the PIFmediated transcriptional activation of auxin biosynthesis genes BcYUC6-MF2 and BcYUC8-LF.Our research uncovered the important role of BcAHL24-MF1 in regulating light-triggered inhibition of hypocotyl elongation,therefore presenting a valuable genetic target for crop breeding.
基金Supported by the National Natural Science Foundation(30460021)the National Nonprofit Institute Research Grant of CATAS-ITBB(ITB-BZD0717)~~
文摘[Objective] The aim of this study was to prepare the recombination protein of rubber elongation factor and its polyclonal antibodies.[Method] The encoding gene of rubber elongation factor(REF)was amplified by RT-PCR,and cloned into the prokaryotic expression vector pDEST17 to transform into Escherichia coil BI2I-AI.The recombinant protein induced by L-Arabinose was purified by the affinity chromatography.As the immunogen,the recombination protein was used to immunize mice for preparing polyclonal antibodies,while ELISA and Western blot hybridization were used to detect the titers and specificity.[Result] The purified recombination protein of REF with high expression was used to immunize house mice for preparing polyclonal antibodies with high titer and specificity.The western blot hybridization showed that the antibody could recognize the natural REF from latex.[Conclusion] The recombination protein of REF was successfully obtained and the mouse anti REF antibody with high titer and specificity was prepared,which lays a basis for further studies on biological functions of rubber elongation factor and other membrane proteins in rubber particles.
文摘Differences of gene expression between salinity_stressed and control rice ( Oryza sativa L. ssp. indica ) cultivar “Zhaiyeqing 8' were compared using differential display PCR (DD_PCR) technique. Sequence analysis of one salt_inducible cDNA clone revealed that this clone represented a new member of rice translation elongation factor 1A (eEF1A) gene family and was tentatively named REF1A. Northern blot hybridization using REF1A fragment as a probe was performed to investigate the expression of rice translation elongation factor 1A gene in response to various environmental factors. It was observed that expression of the eEF1A gene in rice shoots was dramatically induced by salinity stress or exogenous application of abscisic acid (ABA). The induction of this gene by ABA stress occurred more quickly than that by salinity stress. In addition, expression of rice translation elongation factor 1A gene was also induced by drought (15% PEG6000), cold (4 ℃) or heat_shock (37 ℃) stresses. The results suggested that the induction of translation elongation factor 1A gene expression by environmental stresses might reflect the general adaptive response of rice plants to the adverse circumstances.
基金Supported by Natural Science Foundation of Anhui University(KJ2007B120)Doctor Foundation Projects of Anhui Agricultural University (WD2006-12)~~
文摘[Objective]The research aimed to discuss the tolerance of Salix matsudana to single or compound heavy metals and provide theoretical basis for renovating polluted soil by heavy metals with woody plants.[Method]Using root elongation method,the effects of heavy metal Cu^2+,Pb^2+,Zn^2+ and their mixed solution on the adventitious roots growth of S.matsudana cuttings were studied.[Result]The adventitious roots growth of S.matsudana cuttings was obviously affected by different concentrations of heavy metals solution.Adventitious roots of S.matsudana cuttings could not grow while the concentration of Cu^2+ was higher than 15 mg/L,the mixture solution concentration was higher than 20 mg/L and Zn^2+ concentration was higher than 30 mg/L.When the solution concentration reached 40 mg/L,adventitious roots of S.matsudana cuttings could grow only in Pb^2+ treatment group.With the increasing of the solution concentration,the number of adventitious roots of S.matsudana cuttings gradually decreased.In 5 mg/L Zn^2+ treatment group,the number of adventitious roots of S.matsudana cuttings was the most,the longest root length and average root length were the longest and the rooting rate was the highest.[Conclusion]The tolerance of S.matsudana to Pb^2+ was strongest and its tolerance to Cu^2+ was the weakest.The tolerance order of S.matsudana to three kinds of heavy metals and their mixed solution was as following:Pb^2+〉Zn^2+〉Cu^2++Pb^2++Zn^2+〉Cu^2+.
文摘A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition. A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition.
文摘Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell wall synthesis stages, we compared the respective transcriptomes and metabolite profiles. Comparative analysis of transcriptomes by cDNA array identified 633 genes that were differentially regulated during fiber development. Principal component analysis (PCA) using expressed genes as variables divided fiber samples into four groups, which are diagnostic of developmental stages. Similar grouping results are also found if we use non-polar or polar metabolites as variables for PCA of developing fibers. Auxin signaling, wall-loosening and lipid metabolism are highly active during fiber elongation, whereas cellulose biosynthesis is predominant and many other metabolic pathways are downregulated at the secondary cell wall synthesis stage. Transcript and metabolite profiles and enzyme activities are consistent in demonstrating a specialization process of cotton fiber development toward cellulose synthesis. These data demonstrate that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles. During the secondary cell wall synthesis stage, metabolic pathways are streamed into cellulose synthesis.
基金Supported by the Middle-Young Age Backbone Talent Cultivation Program of Fujian Health System,No.2013-ZQNJC-2Key Projects of Science and Technology Plan of Fujian Province,No.2014Y0009
文摘AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.
基金supported by USDA grant 2008-35100-19244 to the University of Floridathe University of Florida Agricultural Experiment Stationby the Center for Medical, Agricultural, and Veterinary Entomology, U.S. Department of AgricultureAgricultural Research Service, Gainesville, FL, USA
文摘A study was conducted in four compartments of a polycarbonate greenhouse at Gainesville,FL, USA to investigate how a soybean(Glycine max L. Merr.) cultivar, Maverick(maturity group III, indeterminate), responded to three elevated temperatures, ELT,(day/night of 34/26 °C, 38/30 °C, and 42/34 °C) in comparison to a control growth temperature(30/22 °C).Carbon dioxide(CO_2) concentration was maintained at 700 μmol mol^(-1) in each compartment by a processor controlled air-sampling and CO_2-injection system. Three sequential experiments were conducted at different times of year(summer, autumn, and early spring)to investigate the effect of intensity, timing, and duration of ELT on soybean node number,internode elongation, mainstem length, and number of pods set per plant. At the control temperature, the soybean plants grown in the polycarbonate greenhouse were taller than field-grown plants. When plants were grown under continuous ELT applied soon after sowing or at initial flowering, the number of nodes increased with increasing ELT intensity,whereas the length of individual internodes decreased. When ELT treatment was applied during the beginning of flowering stage(R1–R2) or earlier, more nodes were produced and the length of affected internodes was decreased. When the ELT was imposed later at reproductive stage R5+ just before the beginning of seed filling, effects on node numbers and internode lengths were negligible. Short-term(10-day) duration of ELT applied at four stages from V3 to R5+ did not significantly affect final mean numbers of nodes or mean mainstem lengths. Possible mechanisms of elevated temperature effects on soybean internode elongation and node number(internode number) are discussed. Total pod numbers per plant increased linearly with mainstem node numbers and mainstem length.Furthermore, total pod numbers per plant were greatest at 34/26 °C rather than at the control temperature of 30/22 °C(and remained high at 38/30 °C). Mild increases in temperature might not threaten, but actually increase, yields of soybean in northerly zones where this crop is currently grown at slightly suboptimal temperatures. However, a sustained increase in ambient temperature would likely threaten soybean yields.
基金supported by the National Natural Science Foundation of China (Nos. 51622809, 51878471)
文摘Production of biochemicals from waste streams has been attracting increasing worldwide interest to achieve climate protection goals.Chain elongation(CE)for production of mediumchain carboxylic acids(MCCAs,especially caproate,enanthate and caprylate)from diverse biowaste has emerged as a potential economic and environmental technology for a sustainable society.The present mini review summarizes the research utilizing various synthetic or real waste-derived substrates available for MCCA production.Additionally,the microbial characteristics of the CE process are surveyed and discussed.Considering that a large proportion of recalcitrantly biodegradable biowaste and residues cannot be further utilized by CE systems and remain to be treated and disposed,we propose here a loop concept of bioconversion of biowaste to MCCAs making full use of the biowaste with zero emission.This could make possible an alternative technology for synthesis of value-added products from a wide range of biowaste,or even non-biodegradable waste(such as,plastics and rubbers).Meanwhile,the remaining scientific questions,unsolved problems,application potential and possible developments for this technology are discussed.
文摘The testing conditions of a fibre bundle tensile tester (TENSOR) are elongation speed (ES), gauge length (GL), pretension, jaw pressure, environmental temperature and relative humidity, instrument linearity and sensitivity. The effects on fibre-bundle tensile properties at different GL and ES have been discussed in detail and compared with Peirce’s theories on the weaklinks and the breaking time effect. The experimental results indicate that the tensile properties of fibre bundles are strongly affected by GL and vary with different GL. The reasonable GL should be 5 15 mm rather than 3.2 mm for wool bundle measurements. The ES ranging from 20 mm/min to 40 mm/min is beneficial for obtaining comparatively stable and accurate tensile values, whereas 20 mm/min used in current testing for wool fibre bundles is at the lower limit of the suggested range. For bundle modulus measurement, the sampling interval must be selected appropriately. The new calculation of the sampling interval has been established.
基金supported by the Natural Science Foundation of Guangdong Province,China(S2012020011043)the National High Technology Research and Development Program of China(2014AA10A605)+2 种基金the Special Fund for Agro-scientific Research in the Public Interest(201503106)Modern Agriculture Industry Technology System for Rice in Guangdong Province(2016LM1066,2017LM1066,2018LM1066)the Swiss Agency for Development and Cooperation through its funding of “Closing Rice Yield Gaps in Asia” Project(CORIGAP)
文摘Short basal internodes are important for lodging resistance of rice(Oryza sativa L.).Several canopy indices affect the elongation of basal internodes,but uncertainty as to the key factors determining elongation of basal internodes persists.The objectives of this study were(1)to identify key factors affecting the elongation of basal internodes and(2)to establish a quantitative relationship between basal internode length and canopy indices.An inbred rice cultivar,Yinjingruanzhan,was grown in two split-plot field experiments with three N rates(0,75,and 150 kg N ha−1 in early season and 0,90,and 180 kg N ha−1 in late season)as main plots,three seedling densities(16.7,75.0,and 187.5 seedlings m−2)as subplots,and three replications in the 2015 early and late seasons in Guangzhou,China.Light intensity at base of canopy(Lb),light quality as determined from red/far-red light ratio(R/FR),light transmission ratio(LTR),leaf area index(LAI),leaf N concentration(NLV)and final length of second internode(counted from soil surface upward)(FIL)were recorded.Higher N rate and seedling density resulted in significantly longer FIL.FIL was negatively correlated with Lb,LTR,and R/FR(P<0.01)and positively correlated with LAI(P<0.01),but not correlated with NLV(P>0.05).Stepwise linear regression analysis showed that FIL was strongly associated with Lb and LAI(R2=0.82).Heavy N application to pot-grown rice at the beginning of first internode elongation did not change FIL.We conclude that FIL is determined mainly by Lb and LAI at jointing stage.NLV has no direct effect on the elongation of basal internodes.N application indirectly affects FIL by changing LAI and light conditions in the rice canopy.Reducing LAI and improving canopy light transmission at jointing stage can shorten the basal internodes and increase the lodging resistance of rice.
文摘To explore the causes of the postoperative complications of the penile elongation and the measures to prevent them in order to raise the success rate of the penile elongation. 1000 patients who had received the penile elongation were reviewed and analyzed for the causes of postoperative complications, and the measures of prevention and treatment were discussed. Our results showed that, of the 1000 cases, 64 had the postoperative complications, including 20 cases of edema of prepuce, 15 cases of flap necrosis, 12 hematoma, 9 infections, and 8 cases of fat and clumsy penis. It is concluded that correct operative manipulation, strict aseptic measures and necessary postoperative care and management could avoid or reduce the postoperative complications. When complications happened , a satisfactory result can be achieved with timely and correct treatment in the majority of the patients.
文摘This paper employs simple rolling process plus annealing to refine the grain size of magnesium alloy ZK60. This goal is effectively achieved, obtaining grains as fine as -3.7 um. Such a specimen shows an elongation of 642%, and its ultimate fracture surface exhibits intergranular separation and significant grain growth. Additionally, the effects of the specimen's geometry and tensile test axis with respect to the rolling direction on superplastic elongation is studied, which has not been done before.
文摘The tumor selective over-expression of the human Hsp70 gene has been well documented in human tumors,linked to the poor prognosis,being refractory to chemo-and radio-therapies as well as the advanced stage of tumorous lesions in particular.However,both the nature and details of aberrations in the control of the Hsp70 expression in tumor remain enigmatic.By comparing various upstream segments of the Hsp70 gene for each''s ability to drive the luciferase reporter genes in the context of the tumor cell lines varying in their p53 status and an immortal normal liver cell line,we demonstrated in a great detail the defects in the control mechanisms at the both initiation and elongation levels of transcription being instrumental to the tumor selective profile of its expression.Our data should not only offer new insights into our understanding of the tumor specific over-expression of the human Hsp70 gene,but also paved the way for the rational utilization of the tumor selective mechanism with the Hsp70 at the central stage fortargeting the therapeutic gene expression to human tumors.
基金Supported by the National Natural Science Foundation of China (No. 30771781)the Natural Science Foundation of Guangdong Province (No.06022672)
文摘Objective To study the alternative expression and sequence of human elongation factor-1δ (human EF-1δ p31) during malignant transformation of human bronchial epithelial cells induced by cadmium chloride (CdCl2) and its possible mechanism. Methods Total RNA was isolated at different stages of transformed human bronchial epithelial cells (16HBE) induced by CdCl2 at a concentration of 5.0 μM. Special primers and probe for human EF-1δ p31 were designed and expression of human EF-18 mRNA from different cell lines was detected with fluorescent quantitative PCR technique. EF-18 cDNA from different cell lines was purified and cloned into pMD 18-T vector followed by confirming and sequencing analysis. Results The expressions of human EF-1δ p31 at different stages of 16HBE cells transformed by CdCl2 was elevated (P〈0.01 or P〈0.05). Compared with their corresponding non-transformed ceils, the overexpression level of EF-15 p31 was averagely increased 2.9 folds in Cd-pretransformed cells, 4.3 folds in Cd-transformed ceils and 7.2 folds in Cd-tumorigenic cells. No change was found in the sequence of overexpressed EF-1δ p31 at different stages of 16HBE cells transformed by CdCl2. Conclusion Overexpression of human EF-1δ p31 is positively correlated with malignant transformation of 16HBE cells induced by CdCl2, but is not correlated with DNA mutations.
基金Supported by Key Joint Foundation for Fostering Talents of NSFC-Henan Province(U1204307)Key Project of Science and Technology of Henan Province(102102110155,142102110173,152102210334)Cultivation Fund of Luoyang Normal University(2013-PYJJ-001,10000993)
文摘Seeds of soybeans and mung beans were soaked into five different concentrations (0, 0.05, 0.10, 0.20, 0.30 mg/L) of natural brassinolide ( NBR ) solution. According to the results, natural brassinolide treatment could improve seed germination rate and hypocotyl-radicle ratio of soybeans and mung beans and promote the growth of sprouts. To be specific, seed germination rate of soybeans reached the highest in 0.05 mg/L natural brassinolide treatment, which was im- proved by 25.0 percentage points compared with the control group, and the sprout length was improved by 4.33 em; 0.30 mg/L natural brassinolide exhibited the most significant promotion effect on seed germination and sprout growth of mung beans, seed germination rate was improved by 18.3 percentage points and sprout length was improved by 7.29 cm; hypocotyl-radiele ratio of soybean and mung bean sprouts reached the highest (2.96, 1.43 ) in 0.05 mg/L natural brassinolide treatment.