For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive ...In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive analysis of factors affecting the displacement factor, such as mechanical properties of the cover rock, the ratio of mining depth to seam thickness, dip angle of the coal seam and the thickness of loose layer. Data of 63 typical observation stations were used as a training and testing sample set. A SVM regression model of the displacement factor and the factors affecting it was established with a kernel function, an insensitive loss factor and a properly selected penalty factor. Given an accurate calculation algorithm for testing and analysis, the results show that an SVM regression model can calcu- late displacement factor precisely and reliable precision can be obtained which meets engineering requirements. The experimental results show that the method to calculation of the displacement factor, based on the SVM method, is feasible. The many factors affecting the displacement factor can be consid- ered with this method. The research provides an efficient and accurate approach for the calculation of displacement in mining subsidence orediction.展开更多
A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac(NLD)equation.Based on the implicit integration factor(IIF)method,two schemes are proposed.Centra...A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac(NLD)equation.Based on the implicit integration factor(IIF)method,two schemes are proposed.Central differences are applied to the spatial discretization.The semi-discrete scheme keeps the conservation of the charge and energy.For the temporal discretization,second-order IIF method and fourth-order IIF method are applied respectively to the nonlinear system arising from the spatial discretization.Numerical experiments are given to validate the accuracy of these schemes and to discuss the interaction dynamics of the NLD solitary waves.展开更多
In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system an...In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor(IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.展开更多
This paper proposes and analyzes an efficient finite difference scheme for the two-dimensional nonlinear Schr?dinger(NLS) equation involving fractional Laplacian. The scheme is based on a weighted and shifted Grü...This paper proposes and analyzes an efficient finite difference scheme for the two-dimensional nonlinear Schr?dinger(NLS) equation involving fractional Laplacian. The scheme is based on a weighted and shifted Grünwald-Letnikov difference(WSGD) operator for the spatial fractional Laplacian. We prove that the proposed method preserves the mass and energy conservation laws in semi-discrete formulations. By introducing the differentiation matrices, the semi-discrete fractional nonlinear Schr?dinger(FNLS) equation can be rewritten as a system of nonlinear ordinary differential equations(ODEs) in matrix formulations. Two kinds of time discretization methods are proposed for the semi-discrete formulation. One is based on the Crank-Nicolson(CN) method which can be proved to preserve the fully discrete mass and energy conservation. The other one is the compact implicit integration factor(c IIF) method which demands much less computational effort. It can be shown that the cIIF scheme can approximate CN scheme with the error O(τ~2). Finally numerical results are presented to demonstrate the method’s conservation, accuracy, efficiency and the capability of capturing blow-up.展开更多
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
基金the Research and Innovation Program for College and University Graduate Students in Jiangsu Province (No.CX10B_141Z)the National Natural Science Foundation of China (No.41071273) for support of this project
文摘In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive analysis of factors affecting the displacement factor, such as mechanical properties of the cover rock, the ratio of mining depth to seam thickness, dip angle of the coal seam and the thickness of loose layer. Data of 63 typical observation stations were used as a training and testing sample set. A SVM regression model of the displacement factor and the factors affecting it was established with a kernel function, an insensitive loss factor and a properly selected penalty factor. Given an accurate calculation algorithm for testing and analysis, the results show that an SVM regression model can calcu- late displacement factor precisely and reliable precision can be obtained which meets engineering requirements. The experimental results show that the method to calculation of the displacement factor, based on the SVM method, is feasible. The many factors affecting the displacement factor can be consid- ered with this method. The research provides an efficient and accurate approach for the calculation of displacement in mining subsidence orediction.
基金the National Natural Science Foundation of China(No.11671044)the Science Challenge Project(No.TZ2016001)the Beijing Municipal Education Commission(No.PXM2017014224000020).
文摘A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac(NLD)equation.Based on the implicit integration factor(IIF)method,two schemes are proposed.Central differences are applied to the spatial discretization.The semi-discrete scheme keeps the conservation of the charge and energy.For the temporal discretization,second-order IIF method and fourth-order IIF method are applied respectively to the nonlinear system arising from the spatial discretization.Numerical experiments are given to validate the accuracy of these schemes and to discuss the interaction dynamics of the NLD solitary waves.
基金supported by the Foundation of Liaoning Educational Committee (Grant No. L201604)China Scholarship Council, National Natural Science Foundation of China (Grant Nos. 11571002, 11171281 and 11671044)+1 种基金the Science Foundation of China Academy of Engineering Physics (Grant No. 2015B0101021)the Defense Industrial Technology Development Program (Grant No. B1520133015)
文摘In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor(IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.
基金supported by National Natural Science Foundation of China(Grant Nos.61573008 and 61703290)Laboratory of Computational Physics(Grant No.6142A0502020717)National Science Foundation of USA(Grant No.DMS-1620108)
文摘This paper proposes and analyzes an efficient finite difference scheme for the two-dimensional nonlinear Schr?dinger(NLS) equation involving fractional Laplacian. The scheme is based on a weighted and shifted Grünwald-Letnikov difference(WSGD) operator for the spatial fractional Laplacian. We prove that the proposed method preserves the mass and energy conservation laws in semi-discrete formulations. By introducing the differentiation matrices, the semi-discrete fractional nonlinear Schr?dinger(FNLS) equation can be rewritten as a system of nonlinear ordinary differential equations(ODEs) in matrix formulations. Two kinds of time discretization methods are proposed for the semi-discrete formulation. One is based on the Crank-Nicolson(CN) method which can be proved to preserve the fully discrete mass and energy conservation. The other one is the compact implicit integration factor(c IIF) method which demands much less computational effort. It can be shown that the cIIF scheme can approximate CN scheme with the error O(τ~2). Finally numerical results are presented to demonstrate the method’s conservation, accuracy, efficiency and the capability of capturing blow-up.