期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Exponential Time Differencing Method for a Reaction-Diffusion System with Free Boundary
1
作者 Shuang Liu Xinfeng Liu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期354-371,共18页
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet... For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples. 展开更多
关键词 Reaction diffusion equations Free boundary integrating factor method Level set method
在线阅读 下载PDF
Compact implicit integration factor methods for some complex-valued nonlinear equations 被引量:1
2
作者 张荣培 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期49-53,共5页
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me... The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient. 展开更多
关键词 compact implicit integration factor method finite difference nonlinear Schrodinger equa-tion complex Ginzburg Landau equation
原文传递
A method to calculate displacement factors using SVM 被引量:5
3
作者 Li Peixian Tan Zhixiang +1 位作者 Yan Lili Deng Kazhong 《Mining Science and Technology》 EI CAS 2011年第3期307-311,共5页
In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive ... In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive analysis of factors affecting the displacement factor, such as mechanical properties of the cover rock, the ratio of mining depth to seam thickness, dip angle of the coal seam and the thickness of loose layer. Data of 63 typical observation stations were used as a training and testing sample set. A SVM regression model of the displacement factor and the factors affecting it was established with a kernel function, an insensitive loss factor and a properly selected penalty factor. Given an accurate calculation algorithm for testing and analysis, the results show that an SVM regression model can calcu- late displacement factor precisely and reliable precision can be obtained which meets engineering requirements. The experimental results show that the method to calculation of the displacement factor, based on the SVM method, is feasible. The many factors affecting the displacement factor can be consid- ered with this method. The research provides an efficient and accurate approach for the calculation of displacement in mining subsidence orediction. 展开更多
关键词 Mining subsidence Displacement factor SVM Probability integration method
在线阅读 下载PDF
Implicit integration factor method for the nonlinear Dirac equation
4
作者 Jing-Jing Zhang Xiang-Gui Li Jing-Fang Shao 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第2期172-185,共14页
A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac(NLD)equation.Based on the implicit integration factor(IIF)method,two schemes are proposed.Centra... A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac(NLD)equation.Based on the implicit integration factor(IIF)method,two schemes are proposed.Central differences are applied to the spatial discretization.The semi-discrete scheme keeps the conservation of the charge and energy.For the temporal discretization,second-order IIF method and fourth-order IIF method are applied respectively to the nonlinear system arising from the spatial discretization.Numerical experiments are given to validate the accuracy of these schemes and to discuss the interaction dynamics of the NLD solitary waves. 展开更多
关键词 Nonlinear Dirac equation CONSERVATION implicit integration factor method interaction dynamics.
原文传递
A conservative local discontinuous Galerkin method for the solution of nonlinear Schrdinger equation in two dimensions 被引量:7
5
作者 ZHANG RongPei YU XiJun +1 位作者 LI MingJun LI XiangGui 《Science China Mathematics》 SCIE CSCD 2017年第12期2515-2530,共16页
In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system an... In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor(IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon. 展开更多
关键词 discontinuous Galerkin method nonlinear Schrdinger equation CONSERVATION Krylov implicit integration factor method
原文传递
A conservative numerical method for the fractional nonlinear Schrodinger equation in two dimensions
6
作者 Rongpei Zhang Yong-Tao Zhang +2 位作者 Zhen Wang Bo Chen Yi Zhang 《Science China Mathematics》 SCIE CSCD 2019年第10期1997-2014,共18页
This paper proposes and analyzes an efficient finite difference scheme for the two-dimensional nonlinear Schr?dinger(NLS) equation involving fractional Laplacian. The scheme is based on a weighted and shifted Grü... This paper proposes and analyzes an efficient finite difference scheme for the two-dimensional nonlinear Schr?dinger(NLS) equation involving fractional Laplacian. The scheme is based on a weighted and shifted Grünwald-Letnikov difference(WSGD) operator for the spatial fractional Laplacian. We prove that the proposed method preserves the mass and energy conservation laws in semi-discrete formulations. By introducing the differentiation matrices, the semi-discrete fractional nonlinear Schr?dinger(FNLS) equation can be rewritten as a system of nonlinear ordinary differential equations(ODEs) in matrix formulations. Two kinds of time discretization methods are proposed for the semi-discrete formulation. One is based on the Crank-Nicolson(CN) method which can be proved to preserve the fully discrete mass and energy conservation. The other one is the compact implicit integration factor(c IIF) method which demands much less computational effort. It can be shown that the cIIF scheme can approximate CN scheme with the error O(τ~2). Finally numerical results are presented to demonstrate the method’s conservation, accuracy, efficiency and the capability of capturing blow-up. 展开更多
关键词 fractional nonlinear Schrodinger equation weighted and shifted Grünwald-Letnikov difference compact integration factor method CONSERVATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部