The quarter model of an active suspension is established in the form of controllable autoregressive moving average (CARMA) model. An accelerometer can be mounted on the wheel hub for measuring road disturbance; this...The quarter model of an active suspension is established in the form of controllable autoregressive moving average (CARMA) model. An accelerometer can be mounted on the wheel hub for measuring road disturbance; this signal is used to identify the CARMA model parameters by recursive forgetting factors least square method. The linear quadratic integral (LQI) control method for the active suspension is presented. The LQI control algorithm is fit for vehicle suspension control, for the control performance index can comprise multi controlled variables. The simulation results show that the vertical acceleration and suspension travel both are decreased with the LQI control in the low frequency band, and the suspension travel is increased with the LQI control in the middle or high frequency band. The suspension travel is very small in the middle or high frequency band, the suspension bottoming stop will not happen, so the vehicle ride quality can be improved apparently by the LQI control.展开更多
In this paper, a fire-new general integral control, named general convex integral control, is proposed. It is derived by defining a nonlinear function set to form the integral control action and educe a new convex fun...In this paper, a fire-new general integral control, named general convex integral control, is proposed. It is derived by defining a nonlinear function set to form the integral control action and educe a new convex function gain integrator, introducing the partial derivative of Lyapunov function into the integrator and resorting to a general strategy to transform ordinary control into general integral control. By using Lyapunov method along with the LaSalle s invariance principle, the theorem to ensure regionally as well as semi-globally asymptotic stability is established only by some bounded information. Moreover, the lemma to ensure the integrator output to be bounded in the time domain is proposed. The highlight point of this integral control strategy is that the integral control action seems to be infinity, but it factually is finite in the time domain. Therefore, a simple and ingenious method to design the general integral control is founded. Simulation results showed that under the normal and perturbed cases, the optimum response in the whole control domain of interest can all be achieved by a set of control gains, even under the case that the payload is changed abruptly.展开更多
An efficient critical control system design is proposed in this paper. The key idea is to decompose the design problem into two simpler design steps by the technique used in the classical loop transfer recovery method...An efficient critical control system design is proposed in this paper. The key idea is to decompose the design problem into two simpler design steps by the technique used in the classical loop transfer recovery method (LTR). The disturbance cancellation integral controller is used as a basic controller. Since the standard loop transfer recovery method cannot be applied to the disturbance cancellation controller, the nonstandard version recently found is used for the decomposition. Exogenous inputs with constraints both on the amplitude and rate of change are considered. The majorant approach is taken to obtain the analytical sufficient matching conditions. A numerical design example is presented to illustrate the effiectiveness of the proposed design.展开更多
This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of vi...This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.展开更多
For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly...For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a novel guidance law based on the integral sliding mode control is presented with the target acceler- ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on the integral sliding mode control without the information of the upper bound on the target accel- eration is developed, where the upper bound of the target acceleration is estimated online by a designed adaptive law. The both presented guidance laws can make sure that the elevation angular rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite time. In the end, the results of the guidance performance for the proposed guidance laws are pre- sented by numerical simulations. Although the designed guidance laws are developed for the con- stant speed missiles, the simulation results for the time-varying speed missiles are also shown to further confirm the designed guidance laws.展开更多
A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The...A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.展开更多
Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed ...Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.展开更多
In this study,a simple position synchronization control algorithm based on an integral sliding mode is developed for dualarm robotic manipulator systems.A first-order sliding surface is designed using cross-coupling e...In this study,a simple position synchronization control algorithm based on an integral sliding mode is developed for dualarm robotic manipulator systems.A first-order sliding surface is designed using cross-coupling error in order to ensure position synchronization of dual-arm manipulators.The design objective of the proposed controller is to ensure stability as well as to synchronize the movement of both arms while maintaining the trajectory as desired.The integral sliding mode eliminates the reaching phase and guarantees robustness throughout the whole operating period.Additionally,a low pass filter is used to smoothen the discontinuous element and minimize unwanted chattering.Lyapunov stability theory is utilized to prove the asymptotic stability of the controlled system.Simulation studies are performed to validate the proposed controller′s effectiveness.Also,to investigate the possibility of realizing the proposed dynamic control method in practical applications,experiments are conducted on a 14DoF coordinated links(COOL)dual-arm robotic manipulator system.Experimental evidence indicates adequate efficiency in trajectory tracking and guarantees robustness in the presence of parametric uncertainty and external disturbance.展开更多
A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system und...A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.展开更多
This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee t...This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.展开更多
The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a der...The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a derivation and integral sliding mode variable structurecontrol scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumptionthat the derivative of desired signal must be known in conventional sliding mode variable structurecontrol, a nonlinear derivation controller is used to weaken the chattering of system. The designmethod of switching function in integral sliding mode control, nonlinear derivation coefficient andcontrollers of DI-SVSC is presented respectively. Simulation shows that the control approach is ofnice robustness and improves velocity tracking accuracy considerably.展开更多
In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes...In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes.Therefore,it is significant to enhance the steering stability of tracked vehicle with hydrostatic drive to meet the need of future battlefield.In this paper,a sliding mode control algorithm is proposed and applied to achieve desired yaw rates.The speed controller and the yaw rate controller are designed through the kinematics and dynamics analysis.In addition,the nonlinear derivative and integral sliding mode control algorithm is designed,which is supposed to efficiently reduce the integration saturation and the disturbances from the unsmooth road surfaces through a conditional integrator approach.Moreover,it improves the response speed of the system and reduces the chattering by the derivative controller.The hydrostatic tracked vehicle module is modeled with a multi-body dynamic software RecurDyn and the steering control strategy module is modeled by MATLAB/Simulink.The co-simulation results of the whole model show that the control strategy can improve the vehicle steering response speed and also ensure a smooth control output with small chattering and strong robustness.展开更多
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid...An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach.展开更多
The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees...The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.展开更多
This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surfa...This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surface is constructed such that the sliding mode is robust stable with a prescribed disturbance attenuation level γ for a class of switching signals with average dwell time.Furthermore,variable structure controllers are designed to maintain the state of switched system on the sliding surface from the initial time.A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order m...This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.展开更多
An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding ...An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties.展开更多
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr...A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.展开更多
Climate change is accelerating globally,raising significant concerns regarding the environmental risks associated with combined sewer overflows(CSOs).These rainfall events lead to the excessive discharge of multiple p...Climate change is accelerating globally,raising significant concerns regarding the environmental risks associated with combined sewer overflows(CSOs).These rainfall events lead to the excessive discharge of multiple pollutants into natural waters.However,greenhouse gas(GHG)emissions from CSOs,which are crucial for carbon neutrality in urban water systems,remain fragmented.Using the life-cycle assess-ment method expansion approach,this study breaks down the formation and discharge processes of CSOs and uncovers the underlying mechanisms driving GHG emissions during each period.Given the complex-ity and uncertainty in the spatial distribution of GHG emissions from CSOs,the development of standard monitoring and estimation methods is vital.This study identifies the factors influencing GHG emissions within the urban drainage system(UDS)and defines the interactive GHG emission boundaries and accounting framework related to CSOs.This framework is expanded to consider the hybrid nature of urban engineering and hydraulic interactions during the CSO events.Advanced modeling technologies have emerged as essential tools for predicting and managing GHG emissions from CSOs.This review pro-motes comprehensive data-driven methods for predicting GHG emissions from CSOs,fully considering the inherent heterogeneity of CSOs and the impact of multi-source contaminants discharged into aquatic environments.It emphasizes refining emission boundary definitions,novel accounting practices adapting data-driven methods,and comprehensive management strategies in line with the move toward carbon neutrality in the UDS.It advocates the adoption of solutions including advanced technologies and artifi-cial intelligent methods to mitigate CSO-related GHG emissions,stressing the significance of integrating low-carbon solutions and a comprehensive data-driven management framework in future research directions.展开更多
文摘The quarter model of an active suspension is established in the form of controllable autoregressive moving average (CARMA) model. An accelerometer can be mounted on the wheel hub for measuring road disturbance; this signal is used to identify the CARMA model parameters by recursive forgetting factors least square method. The linear quadratic integral (LQI) control method for the active suspension is presented. The LQI control algorithm is fit for vehicle suspension control, for the control performance index can comprise multi controlled variables. The simulation results show that the vertical acceleration and suspension travel both are decreased with the LQI control in the low frequency band, and the suspension travel is increased with the LQI control in the middle or high frequency band. The suspension travel is very small in the middle or high frequency band, the suspension bottoming stop will not happen, so the vehicle ride quality can be improved apparently by the LQI control.
文摘In this paper, a fire-new general integral control, named general convex integral control, is proposed. It is derived by defining a nonlinear function set to form the integral control action and educe a new convex function gain integrator, introducing the partial derivative of Lyapunov function into the integrator and resorting to a general strategy to transform ordinary control into general integral control. By using Lyapunov method along with the LaSalle s invariance principle, the theorem to ensure regionally as well as semi-globally asymptotic stability is established only by some bounded information. Moreover, the lemma to ensure the integrator output to be bounded in the time domain is proposed. The highlight point of this integral control strategy is that the integral control action seems to be infinity, but it factually is finite in the time domain. Therefore, a simple and ingenious method to design the general integral control is founded. Simulation results showed that under the normal and perturbed cases, the optimum response in the whole control domain of interest can all be achieved by a set of control gains, even under the case that the payload is changed abruptly.
基金supported by Grants-in-Aid for Scientific Research(No. 20560209)
文摘An efficient critical control system design is proposed in this paper. The key idea is to decompose the design problem into two simpler design steps by the technique used in the classical loop transfer recovery method (LTR). The disturbance cancellation integral controller is used as a basic controller. Since the standard loop transfer recovery method cannot be applied to the disturbance cancellation controller, the nonstandard version recently found is used for the decomposition. Exogenous inputs with constraints both on the amplitude and rate of change are considered. The majorant approach is taken to obtain the analytical sufficient matching conditions. A numerical design example is presented to illustrate the effiectiveness of the proposed design.
基金supported by the Artificial Intelligence Innovation and Development Special Fund of Shanghai(No.2019RGZN01041)the National Natural Science Foundation of China(No.92048205).
文摘This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.
基金financial support provided by the National Natural Science Foundation of China(Nos.61174037 and 61021002)the Aeronautical Science Foundation of China(No.20140177002)
文摘For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a novel guidance law based on the integral sliding mode control is presented with the target acceler- ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on the integral sliding mode control without the information of the upper bound on the target accel- eration is developed, where the upper bound of the target acceleration is estimated online by a designed adaptive law. The both presented guidance laws can make sure that the elevation angular rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite time. In the end, the results of the guidance performance for the proposed guidance laws are pre- sented by numerical simulations. Although the designed guidance laws are developed for the con- stant speed missiles, the simulation results for the time-varying speed missiles are also shown to further confirm the designed guidance laws.
基金National Natural Science Foundation of China(61004072)Fundamental Research Funds for the Central Universities(HIT.NSRIF.2009003)+1 种基金Research Fund for the Doctoral Program of Higher Education of China (20070213061, 20102302110031)Scientific Research Foundation for the Returned Overseas Chinese Scholars of Harbin (2010RFLXG001)
文摘A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51521065)
文摘Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.
文摘In this study,a simple position synchronization control algorithm based on an integral sliding mode is developed for dualarm robotic manipulator systems.A first-order sliding surface is designed using cross-coupling error in order to ensure position synchronization of dual-arm manipulators.The design objective of the proposed controller is to ensure stability as well as to synchronize the movement of both arms while maintaining the trajectory as desired.The integral sliding mode eliminates the reaching phase and guarantees robustness throughout the whole operating period.Additionally,a low pass filter is used to smoothen the discontinuous element and minimize unwanted chattering.Lyapunov stability theory is utilized to prove the asymptotic stability of the controlled system.Simulation studies are performed to validate the proposed controller′s effectiveness.Also,to investigate the possibility of realizing the proposed dynamic control method in practical applications,experiments are conducted on a 14DoF coordinated links(COOL)dual-arm robotic manipulator system.Experimental evidence indicates adequate efficiency in trajectory tracking and guarantees robustness in the presence of parametric uncertainty and external disturbance.
基金supported in part by the National Basic Research Program of China(973 Program)(61334)
文摘A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026)the Key Project of Chinese Ministry of Education (Grant No 107058)+1 种基金the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B_116z)and PIRT Jiangnan
文摘This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.
文摘The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a derivation and integral sliding mode variable structurecontrol scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumptionthat the derivative of desired signal must be known in conventional sliding mode variable structurecontrol, a nonlinear derivation controller is used to weaken the chattering of system. The designmethod of switching function in integral sliding mode control, nonlinear derivation coefficient andcontrollers of DI-SVSC is presented respectively. Simulation shows that the control approach is ofnice robustness and improves velocity tracking accuracy considerably.
基金Supported by the National Natural Science Foundation of China(51475044)。
文摘In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes.Therefore,it is significant to enhance the steering stability of tracked vehicle with hydrostatic drive to meet the need of future battlefield.In this paper,a sliding mode control algorithm is proposed and applied to achieve desired yaw rates.The speed controller and the yaw rate controller are designed through the kinematics and dynamics analysis.In addition,the nonlinear derivative and integral sliding mode control algorithm is designed,which is supposed to efficiently reduce the integration saturation and the disturbances from the unsmooth road surfaces through a conditional integrator approach.Moreover,it improves the response speed of the system and reduces the chattering by the derivative controller.The hydrostatic tracked vehicle module is modeled with a multi-body dynamic software RecurDyn and the steering control strategy module is modeled by MATLAB/Simulink.The co-simulation results of the whole model show that the control strategy can improve the vehicle steering response speed and also ensure a smooth control output with small chattering and strong robustness.
基金supported by the China Postdoctoral Science Foundation (200904501035 201003548)+3 种基金the National Natural Science Foundation of China (60835001907160289101600460804017)
文摘An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach.
基金Project(2013ZX04008011)supported by the National Science and Technology Major Projects of ChinaProject(51675100)supported by the National Natural Science Foundation of China
文摘The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.
基金supported by the National Natural Science Foundation of China(No.60874024,60574013)
文摘This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surface is constructed such that the sliding mode is robust stable with a prescribed disturbance attenuation level γ for a class of switching signals with average dwell time.Furthermore,variable structure controllers are designed to maintain the state of switched system on the sliding surface from the initial time.A numerical example is given to illustrate the effectiveness of the proposed method.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
文摘This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.
文摘An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties.
基金Project supported bY the National Natural Science Foundation of China (Grant No.50375085), and the Natural Science Foundation of Shandong Province (Grant No.Y2002F13)
文摘A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.
基金supported by the National Natural Science Foun-dation of China(52325001,52170009,and 52400114)the National Key Research and Development Program of China(2021YFC3200700 and 2021YFC3200702)+1 种基金the Program of Shanghai Academic Research Leader,China(21XD1424000)the Fundamental Research Funds for the Central Universities.
文摘Climate change is accelerating globally,raising significant concerns regarding the environmental risks associated with combined sewer overflows(CSOs).These rainfall events lead to the excessive discharge of multiple pollutants into natural waters.However,greenhouse gas(GHG)emissions from CSOs,which are crucial for carbon neutrality in urban water systems,remain fragmented.Using the life-cycle assess-ment method expansion approach,this study breaks down the formation and discharge processes of CSOs and uncovers the underlying mechanisms driving GHG emissions during each period.Given the complex-ity and uncertainty in the spatial distribution of GHG emissions from CSOs,the development of standard monitoring and estimation methods is vital.This study identifies the factors influencing GHG emissions within the urban drainage system(UDS)and defines the interactive GHG emission boundaries and accounting framework related to CSOs.This framework is expanded to consider the hybrid nature of urban engineering and hydraulic interactions during the CSO events.Advanced modeling technologies have emerged as essential tools for predicting and managing GHG emissions from CSOs.This review pro-motes comprehensive data-driven methods for predicting GHG emissions from CSOs,fully considering the inherent heterogeneity of CSOs and the impact of multi-source contaminants discharged into aquatic environments.It emphasizes refining emission boundary definitions,novel accounting practices adapting data-driven methods,and comprehensive management strategies in line with the move toward carbon neutrality in the UDS.It advocates the adoption of solutions including advanced technologies and artifi-cial intelligent methods to mitigate CSO-related GHG emissions,stressing the significance of integrating low-carbon solutions and a comprehensive data-driven management framework in future research directions.