The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.A...The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.展开更多
To address the deficiency in loss diagnostic methods for turbines working at off-design angles of attack,a novel loss decomposition method suitable for cascade flow with large separation is proposed.The method propose...To address the deficiency in loss diagnostic methods for turbines working at off-design angles of attack,a novel loss decomposition method suitable for cascade flow with large separation is proposed.The method proposed has the following advantages over existing methods:(A)It enables refined loss decomposition for cascade flows,capable of identifying the spatial range of specific regions such as shear layers and backflow regions,thereby obtaining the loss characteristics of these regions.(B)The region identification criteria in this method have clear physical meanings,rather than relying on arbitrary area division.(C)The method has good applicability and is suitable for cascade flows under various angles of attack.Validation shows that this method achieves satisfactory results.Based on this method,the loss mechanisms of a low-pressure turbine cascade at a low Reynolds number of 4.3×10^(4)and angles of attack of-5°,-20°,and-45°are investigated using Large Eddy Simulations(LESs).Entropy analysis quantitatively demonstrates significant differences in the composition of losses among flow regions,due to their different flow characteristics.From the perspective of flow regions,wake loss dominates total loss,while loss in backflow region is negligible.Furthermore,the variation mechanisms of loss with incidence differ among different flow regions.展开更多
A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring sp...A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.展开更多
The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of th...The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of the ether-water solution is used as Gaussian decomposition and seven Gaussian spectral lines are obtained. The center wavelength, the peak intensity and the half peak bandwidth of each Gaussian spectral line are measured, and the multi-peak fitting is made by using Gaussian primitive parameters. The highest and the lowest oscillation energy level differences in the ground state of each Gaussian spectrum are calculated. It is found that there are seven types of luminescent association molecules formed by ether and water molecules in different configurations existed in the solution. The location of each optimum absorption wavelength and the half peak bandwidth of the Gaussian spectral line is different. The energy level difference with the central wavelength of 304 nm attains the maximum value The result can contribute to the study of the molecular association in ether-water solution.展开更多
By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation...By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.展开更多
Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its ...Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its components in the case of multichannel measurements,such as independent component analysis(ICA).However,the source separation of vibration signal from single-channel is impossible.In order to study the source separation from single-channel signal for the purpose of source extraction,the combination method of empirical mode decomposition(EMD) and ICA is proposed in diesel engine signal processing.The performance of the described methods of EMD-wavelet and EMD-ICA in vibration signal application is compared,and the results show that EMD-ICA method outperforms the other,and overcomes the drawback of ICA in the case of single-channel measurement.The independent source signal components can be separated and identified effectively from one-channel measurement by EMD-ICA.Hence,EMD-ICA improves the extraction and identification abilities of source signals from diesel engine vibration measurements.展开更多
Analysis of carbon emission mechanism based on regional perspectives is an im- portant research method capable of achieving energy savings and emission reductions. Xin- jiang, an important Chinese energy production ba...Analysis of carbon emission mechanism based on regional perspectives is an im- portant research method capable of achieving energy savings and emission reductions. Xin- jiang, an important Chinese energy production base, is currently going through a period of strategic opportunities for rapid development. Ensuring stable socio-economic development while achieving energy savings and meeting emission reductions targets, is the key issue currently facing the region. This paper is based on the input-output theory, and conducts a structural decomposition analysis on the factors affecting energy-related carbon emissions in Xinjiang from 1997 to 2007; this analysis employs a hybrid input-output analysis framework of "energy - economy - carbon emissions". (1) Xinjiang's carbon emissions from energy con- sumption increased from 20.70 million tons in 1997 to 40.34 million tons in 2007; carbon emissions growth was mainly concentrated in the production and processing of energy re- sources, the mining of mineral resources, and the processing industry. (2) The analysis of the direct effects of the influencing factors on carbon emissions showed that the change in per capita GDP, the final demand structure, the population scale, and the production structure were the important factors causing an increase in carbon emissions, while the decrease in carbon emission intensity during this period was the important influencing factor in stopping the growth of carbon emissions. This showed that while the sizes of Xinjiang's economy and population were growing, the economic structure had not been effectively optimized and the production technology had not been efficiently improved, resulting in a rapid growth of carbon emissions from energy consumption. (3) The analysis of the indirect effects of the influencing factors of carbon emission showed that the inter-provincial export, fixed capital formation, and the consumption by urban residents had significant influence on the changes in carbon emissions from energy consumption in Xinjiang. (4) The growth of investments in fixed assets of carbon intensive industry sectors, in addition to the growth of inter-provincial exports ofenergy resource products, makes the transfer effect of inter-provincial "embodied carbon" very significant.展开更多
A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl...A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.展开更多
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo...One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.展开更多
A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2...A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.展开更多
A combination of the lattice Boltzmann method and the most recently developed dynamic mode decomposition is proposed for stability analysis. The simulations are performed on a graphical processing unit. Stability of t...A combination of the lattice Boltzmann method and the most recently developed dynamic mode decomposition is proposed for stability analysis. The simulations are performed on a graphical processing unit. Stability of the flow past a cylinder at supercritical state, Re = 50, is studied by the combination for both the exponential growing and the limit cycle regimes. The Ritz values, energy spectrum, and modes for both regimes are presented and compared with the Koopman eigenvalues. For harmonic-like periodic flow in the limit cycle, global analysis from the combination gives the same results as those from the Koopman analysis. For transient flow as in the exponential growth regime, the combination can provide more reasonable results. It is demonstrated that the combination of the lattice Boltzmann method and the dynamic mode decomposition is powerful and can be used for stability analysis for more complex flows.展开更多
Material dematerialization is a basic approach to reduce the pressure on the resources and environment and to realize the sustainable development. The material flow analysis and decomposition method are used to calcul...Material dematerialization is a basic approach to reduce the pressure on the resources and environment and to realize the sustainable development. The material flow analysis and decomposition method are used to calculate the direct material input (DMI) of 14 typical mining cities in Northeast China in 1995–2004 and to analyze the demateri- alization and its driving factors in the different types of mining cities oriented by coal, petroleum, metallurgy and multi-resources. The results are as follows: 1) from 1995 to 2006, the increase rates of the DMI and the material input intensity of mining cities declined following the order of multi-resources, metallurgy, coal, and petroleum cities, and the material utilizing efficiency did following the order of petroleum, coal, metallurgy, and multi-resources cities; 2) during the research period, all the kinds of mining cities were in the situation of weak sustainable development in most years; 3) the pressure on resources and environment in the multi-resources cities was the most serious; 4) the petro- leum cities showed the strong trend of sustainable development; and 5) in recent years, the driving function of eco- nomic development for material consuming has continuously strengthened and the controlling function of material utilizing efficiency for it has weakened. The key approaches to promote the development of circular economy of min- ing cities in Northeast China are put forward in the following aspects: 1) to strengthen the research and development of the technique of resources’ cycling utilization, 2) to improve the utilizing efficiency of resources, and 3) to carry out the auditing system of resources utilization.展开更多
This paper clarifies the essence of the significance test of singular value decomposition analysis (SVD), and investigates four rules for testing the significance of coupled modes of SVD, including parallel analysis...This paper clarifies the essence of the significance test of singular value decomposition analysis (SVD), and investigates four rules for testing the significance of coupled modes of SVD, including parallel analysis, nonparametric bootstrap, random-phase test, and a new rule named modified parallel analysis. A numerical experiment is conducted to quantitatively compare the performance of the four rules in judging whether a coupled mode of SVD is significant as parameters such as the sample size, the number of grid points, and the signal-to-noise ratio vary. The results show that the four rules perform better with lower ratio of the number of grid points to sample size. Modified parallel analysis and nonparametric bootstrap perform best to abandon the spurious coupled modes, but the latter is better than the former to retain the significant coupled modes when the sample size is not much larger than the number of grid points. Parallel analysis and random-phase test are robust to abandon the spurious coupled modes only when either (1) the observations at the grid points are spatially uncorrelated, or (2) the coupled signal is very strong for parallel analysis and is not weak for random-phase test. The reasons affecting the accuracy of the test rules are discussed.展开更多
Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real str...Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on structures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decomposition (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to improve the characteristics and life span of real structures.展开更多
The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. Thi...The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform.展开更多
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals a...In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.展开更多
As China's energy intensity fluctuated in recent years, it is necessary to examine whether this fluctuation happened at a regional level. This paper establishes a decomposition model by using the structural decomp...As China's energy intensity fluctuated in recent years, it is necessary to examine whether this fluctuation happened at a regional level. This paper establishes a decomposition model by using the structural decomposition analysis (SDA) method at a regional level. Then this model is employed to empirically analyze the changes of Beijing's energy intensity. The conclusions are as follows: during 2002-2010, except petroleum, the energy intensity decreased and the changes were mostly attributed to the technology changes, while the final use variation actually increased the energy intensity; comparing different periods of 2002-2010, the decline rates of energy intensity for coal and hydropower were decreasing, resulting from the production technology being more energy-intensive than before; the energy intensity changes of petroleum firstly increased substantially and then decreased moderately.展开更多
Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carb...Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carbon emissions by Logarithmic Mean Divisia Index(LMDI) model. The main conclusions are as follows: 1) Total anthropogenic carbon emission of Nanjing increased from 1.22928 ×10^7 t in 2000 to 3.06939 × 10^7 t in 2009, in which the carbon emission of Inhabitation, mining & manufacturing land accounted for 93% of the total. 2) The average land use carbon emission intensity of Nanjing in 2009 was 46.63 t/ha, in which carbon emission intensity of Inhabitation, mining & manufacturing land was the highest(200.52 t/ha), which was much higher than that of other land use types. 3) The average carbon source intensity in Nanjing was 16 times of the average carbon sink intensity(2.83 t/ha) in 2009, indicating that Nanjing was confronted with serious carbon deficit and huge carbon cycle pressure. 4) Land use area per unit GDP was an inhibitory factor for the increase of carbon emissions, while the other factors were all contributing factors. 5) Carbon emission effect evaluation should be introduced into land use activities to formulate low-carbon land use strategies in regional development.展开更多
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat...On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.展开更多
The importance analysis method represents a powerful tool for quantifying the impact of input uncertainty on the output uncertainty.When an input variable is described by a specific interval rather than a certain prob...The importance analysis method represents a powerful tool for quantifying the impact of input uncertainty on the output uncertainty.When an input variable is described by a specific interval rather than a certain probability distribution,the interval importance measure of input interval variable can be calculated by the traditional non-probabilistic importance analysis methods.Generally,the non-probabilistic importance analysis methods involve the Monte Carlo simulation(MCS)and the optimization-based methods,which both have high computational cost.In order to overcome this problem,this study proposes an interval important analytical method avoids the time-consuming optimization process.First,the original performance function is decomposed into a combination of a series of one-dimensional subsystems.Next,the interval of each variable is divided into several subintervals,and the response value of each one-dimensional subsystem at a specific input point is calculated.Then,the obtained responses are taken as specific values of the new input variable,and the interval importance is calculated by the approximated performance function.Compared with the traditional non-probabilistic importance analysis method,the proposed method significantly reduces the computational cost caused by the MCS and optimization process.In the proposed method,the number of function evaluations is equal to one plus the sum of the subintervals of all of the variables.The efficiency and accuracy of the proposed method are verified by five examples.The results show that the proposed method is not only efficient but also accurate.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52034002 and U2202254)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-19-001)。
文摘The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.
基金co-supported by the National Natural Science Foundation of China(No.52176033)the National Science and Technology Major Project,China(No.J2019-II-0012-0032)the Science Center for Gas Turbine Project,China(No.P2022-B-II-009-001)。
文摘To address the deficiency in loss diagnostic methods for turbines working at off-design angles of attack,a novel loss decomposition method suitable for cascade flow with large separation is proposed.The method proposed has the following advantages over existing methods:(A)It enables refined loss decomposition for cascade flows,capable of identifying the spatial range of specific regions such as shear layers and backflow regions,thereby obtaining the loss characteristics of these regions.(B)The region identification criteria in this method have clear physical meanings,rather than relying on arbitrary area division.(C)The method has good applicability and is suitable for cascade flows under various angles of attack.Validation shows that this method achieves satisfactory results.Based on this method,the loss mechanisms of a low-pressure turbine cascade at a low Reynolds number of 4.3×10^(4)and angles of attack of-5°,-20°,and-45°are investigated using Large Eddy Simulations(LESs).Entropy analysis quantitatively demonstrates significant differences in the composition of losses among flow regions,due to their different flow characteristics.From the perspective of flow regions,wake loss dominates total loss,while loss in backflow region is negligible.Furthermore,the variation mechanisms of loss with incidence differ among different flow regions.
基金Project(2013CB632605)supported by the National Basic Research Development Program of ChinaProjects(51274178,51274179)supported by the National Natural Science Foundation of China
文摘A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2007204)the Natural Sci-ence Foundation of Educational Department of Jiangsu Province(07KJD140208)~~
文摘The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of the ether-water solution is used as Gaussian decomposition and seven Gaussian spectral lines are obtained. The center wavelength, the peak intensity and the half peak bandwidth of each Gaussian spectral line are measured, and the multi-peak fitting is made by using Gaussian primitive parameters. The highest and the lowest oscillation energy level differences in the ground state of each Gaussian spectrum are calculated. It is found that there are seven types of luminescent association molecules formed by ether and water molecules in different configurations existed in the solution. The location of each optimum absorption wavelength and the half peak bandwidth of the Gaussian spectral line is different. The energy level difference with the central wavelength of 304 nm attains the maximum value The result can contribute to the study of the molecular association in ether-water solution.
基金Supported by The Special Foundation of Chinese Meteorological Bureau Climate Changes Program(200920)The Special Foundation of Hunan Major Scientific and Technological Research Program(2008FJ1006)~~
文摘By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.
基金supported by National Natural Science Foundation of China (Grant No. 50975192)Tianjin Municipal Natural Science Foundation of China (Grant No. 10YFJZJC14100)
文摘Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its components in the case of multichannel measurements,such as independent component analysis(ICA).However,the source separation of vibration signal from single-channel is impossible.In order to study the source separation from single-channel signal for the purpose of source extraction,the combination method of empirical mode decomposition(EMD) and ICA is proposed in diesel engine signal processing.The performance of the described methods of EMD-wavelet and EMD-ICA in vibration signal application is compared,and the results show that EMD-ICA method outperforms the other,and overcomes the drawback of ICA in the case of single-channel measurement.The independent source signal components can be separated and identified effectively from one-channel measurement by EMD-ICA.Hence,EMD-ICA improves the extraction and identification abilities of source signals from diesel engine vibration measurements.
基金National Natural Science Foundation of China, No.41501144 National Key Research and Development Program, No.2016YFA0602801+2 种基金 Guangdong Academy of Sciences Youth Science Foundation, No.qn.ij201501 High-level Leading Talent Introduction Program of GDAS, No.2016GDASRC-0101 Scientific Platform and Innovation Capability Construction Program of GDAS, No.2016GDASPT-0210.
文摘Analysis of carbon emission mechanism based on regional perspectives is an im- portant research method capable of achieving energy savings and emission reductions. Xin- jiang, an important Chinese energy production base, is currently going through a period of strategic opportunities for rapid development. Ensuring stable socio-economic development while achieving energy savings and meeting emission reductions targets, is the key issue currently facing the region. This paper is based on the input-output theory, and conducts a structural decomposition analysis on the factors affecting energy-related carbon emissions in Xinjiang from 1997 to 2007; this analysis employs a hybrid input-output analysis framework of "energy - economy - carbon emissions". (1) Xinjiang's carbon emissions from energy con- sumption increased from 20.70 million tons in 1997 to 40.34 million tons in 2007; carbon emissions growth was mainly concentrated in the production and processing of energy re- sources, the mining of mineral resources, and the processing industry. (2) The analysis of the direct effects of the influencing factors on carbon emissions showed that the change in per capita GDP, the final demand structure, the population scale, and the production structure were the important factors causing an increase in carbon emissions, while the decrease in carbon emission intensity during this period was the important influencing factor in stopping the growth of carbon emissions. This showed that while the sizes of Xinjiang's economy and population were growing, the economic structure had not been effectively optimized and the production technology had not been efficiently improved, resulting in a rapid growth of carbon emissions from energy consumption. (3) The analysis of the indirect effects of the influencing factors of carbon emission showed that the inter-provincial export, fixed capital formation, and the consumption by urban residents had significant influence on the changes in carbon emissions from energy consumption in Xinjiang. (4) The growth of investments in fixed assets of carbon intensive industry sectors, in addition to the growth of inter-provincial exports ofenergy resource products, makes the transfer effect of inter-provincial "embodied carbon" very significant.
基金The National Natural Science Foundation of China (No.61374194)
文摘A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.
基金supported by the State Key Program of National Natural Science of China (No. 11232009)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.
基金Project(2012GK2025)supported by Science-Technology Plan Foundation of Hunan Province,ChinaProject(2013zzts039)supported by the Fundamental Research Funds for Central South University,China
文摘A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.
文摘A combination of the lattice Boltzmann method and the most recently developed dynamic mode decomposition is proposed for stability analysis. The simulations are performed on a graphical processing unit. Stability of the flow past a cylinder at supercritical state, Re = 50, is studied by the combination for both the exponential growing and the limit cycle regimes. The Ritz values, energy spectrum, and modes for both regimes are presented and compared with the Koopman eigenvalues. For harmonic-like periodic flow in the limit cycle, global analysis from the combination gives the same results as those from the Koopman analysis. For transient flow as in the exponential growth regime, the combination can provide more reasonable results. It is demonstrated that the combination of the lattice Boltzmann method and the dynamic mode decomposition is powerful and can be used for stability analysis for more complex flows.
基金Under the auspices of Key Program of National Natural Science Foundation of China (No. 40635030)National Natu-ral Science Foundation of China (No. 40571041)
文摘Material dematerialization is a basic approach to reduce the pressure on the resources and environment and to realize the sustainable development. The material flow analysis and decomposition method are used to calculate the direct material input (DMI) of 14 typical mining cities in Northeast China in 1995–2004 and to analyze the demateri- alization and its driving factors in the different types of mining cities oriented by coal, petroleum, metallurgy and multi-resources. The results are as follows: 1) from 1995 to 2006, the increase rates of the DMI and the material input intensity of mining cities declined following the order of multi-resources, metallurgy, coal, and petroleum cities, and the material utilizing efficiency did following the order of petroleum, coal, metallurgy, and multi-resources cities; 2) during the research period, all the kinds of mining cities were in the situation of weak sustainable development in most years; 3) the pressure on resources and environment in the multi-resources cities was the most serious; 4) the petro- leum cities showed the strong trend of sustainable development; and 5) in recent years, the driving function of eco- nomic development for material consuming has continuously strengthened and the controlling function of material utilizing efficiency for it has weakened. The key approaches to promote the development of circular economy of min- ing cities in Northeast China are put forward in the following aspects: 1) to strengthen the research and development of the technique of resources’ cycling utilization, 2) to improve the utilizing efficiency of resources, and 3) to carry out the auditing system of resources utilization.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40233027.
文摘This paper clarifies the essence of the significance test of singular value decomposition analysis (SVD), and investigates four rules for testing the significance of coupled modes of SVD, including parallel analysis, nonparametric bootstrap, random-phase test, and a new rule named modified parallel analysis. A numerical experiment is conducted to quantitatively compare the performance of the four rules in judging whether a coupled mode of SVD is significant as parameters such as the sample size, the number of grid points, and the signal-to-noise ratio vary. The results show that the four rules perform better with lower ratio of the number of grid points to sample size. Modified parallel analysis and nonparametric bootstrap perform best to abandon the spurious coupled modes, but the latter is better than the former to retain the significant coupled modes when the sample size is not much larger than the number of grid points. Parallel analysis and random-phase test are robust to abandon the spurious coupled modes only when either (1) the observations at the grid points are spatially uncorrelated, or (2) the coupled signal is very strong for parallel analysis and is not weak for random-phase test. The reasons affecting the accuracy of the test rules are discussed.
基金Project (No. PIFI-2012 U. de Gto.) supported by the Secretariat of Public Education (SEP), Mexico
文摘Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on structures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decomposition (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to improve the characteristics and life span of real structures.
基金supported by the UM Multi-Year Research Grant under Grant No.MYRG144(Y3-L2)-FST11-ZLM
文摘The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform.
基金supported by the National Science and Technology,China(Grant No.2012BAJ15B04)the National Natural Science Foundation of China(Grant Nos.41071270 and 61473213)+3 种基金the Natural Science Foundation of Hubei Province,China(Grant No.2015CFB424)the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics,China(Grant No.SOED1405)the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science,China(Grant No.Z201303)the Hubei Key Laboratory Foundation of Transportation Internet of Things,Wuhan University of Technology,China(Grant No.2015III015-B02)
文摘In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.
基金Supported by Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA05150600)National Natural Science Foundation of China (No. 71273027 and No. 70903066)Beijing Planning Office of Philosophy and Social Science (No. 11JGC105)
文摘As China's energy intensity fluctuated in recent years, it is necessary to examine whether this fluctuation happened at a regional level. This paper establishes a decomposition model by using the structural decomposition analysis (SDA) method at a regional level. Then this model is employed to empirically analyze the changes of Beijing's energy intensity. The conclusions are as follows: during 2002-2010, except petroleum, the energy intensity decreased and the changes were mostly attributed to the technology changes, while the final use variation actually increased the energy intensity; comparing different periods of 2002-2010, the decline rates of energy intensity for coal and hydropower were decreasing, resulting from the production technology being more energy-intensive than before; the energy intensity changes of petroleum firstly increased substantially and then decreased moderately.
基金Under the auspices of National Natural Science Foundation of China(No.41301633)National Social Science Foundation of China(No.10ZD&030)+1 种基金Postdoctoral Science Foundation of China(No.2012M511243,2013T60518)Clean Development Mechanism Foundation of China(No.1214073,2012065)
文摘Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carbon emissions by Logarithmic Mean Divisia Index(LMDI) model. The main conclusions are as follows: 1) Total anthropogenic carbon emission of Nanjing increased from 1.22928 ×10^7 t in 2000 to 3.06939 × 10^7 t in 2009, in which the carbon emission of Inhabitation, mining & manufacturing land accounted for 93% of the total. 2) The average land use carbon emission intensity of Nanjing in 2009 was 46.63 t/ha, in which carbon emission intensity of Inhabitation, mining & manufacturing land was the highest(200.52 t/ha), which was much higher than that of other land use types. 3) The average carbon source intensity in Nanjing was 16 times of the average carbon sink intensity(2.83 t/ha) in 2009, indicating that Nanjing was confronted with serious carbon deficit and huge carbon cycle pressure. 4) Land use area per unit GDP was an inhibitory factor for the increase of carbon emissions, while the other factors were all contributing factors. 5) Carbon emission effect evaluation should be introduced into land use activities to formulate low-carbon land use strategies in regional development.
基金supported by the Social Science Foundation of China under Grant No.17BGL231。
文摘On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.
文摘The importance analysis method represents a powerful tool for quantifying the impact of input uncertainty on the output uncertainty.When an input variable is described by a specific interval rather than a certain probability distribution,the interval importance measure of input interval variable can be calculated by the traditional non-probabilistic importance analysis methods.Generally,the non-probabilistic importance analysis methods involve the Monte Carlo simulation(MCS)and the optimization-based methods,which both have high computational cost.In order to overcome this problem,this study proposes an interval important analytical method avoids the time-consuming optimization process.First,the original performance function is decomposed into a combination of a series of one-dimensional subsystems.Next,the interval of each variable is divided into several subintervals,and the response value of each one-dimensional subsystem at a specific input point is calculated.Then,the obtained responses are taken as specific values of the new input variable,and the interval importance is calculated by the approximated performance function.Compared with the traditional non-probabilistic importance analysis method,the proposed method significantly reduces the computational cost caused by the MCS and optimization process.In the proposed method,the number of function evaluations is equal to one plus the sum of the subintervals of all of the variables.The efficiency and accuracy of the proposed method are verified by five examples.The results show that the proposed method is not only efficient but also accurate.