In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and no...In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.展开更多
针对多输入多输出正交时频空间(multiple-input multiple-output orthogonal time frequency space,MIMO-OTFS)系统由最大时延、多普勒扩展、天线数量增加带来信道估计计算开销大、准确率下降的问题,提出了一种基于感知辅助和原子选择...针对多输入多输出正交时频空间(multiple-input multiple-output orthogonal time frequency space,MIMO-OTFS)系统由最大时延、多普勒扩展、天线数量增加带来信道估计计算开销大、准确率下降的问题,提出了一种基于感知辅助和原子选择门限的广义正交匹配追踪(sensing aided generalized orthogonal matching pursuit algorithm based on atomic threshold,SA-TGOMP)信道估计算法。该算法首先将雷达探测的用户和周围环境信息转化为OTFS信道的初始索引集,然后引入以固定值选取相关性原子进行迭代的策略和原子选择门限进行支撑集更新。实验结果表明,本文算法能够有效提高信道估计精度的同时减少导频开销。展开更多
针对压电陶瓷的迟滞非线性,建立了基于一种加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLS-SVM)的迟滞动态模型。为了能够方便使用支持向量机,应用了一种动态算子,将迟滞的多值映射变成一一映射。并在传统...针对压电陶瓷的迟滞非线性,建立了基于一种加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLS-SVM)的迟滞动态模型。为了能够方便使用支持向量机,应用了一种动态算子,将迟滞的多值映射变成一一映射。并在传统的最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的基础上加入了支持向量度,以区分数据的重要程度。为了减轻计算量,将数据按照支持向量度从大到小排序,其中支持向量度接近于零的数据被视作非支持向量。使用剪枝法按一定比例减去支持向量度比较小的数据,利用粒子群算法(Particle Swarm Optimization, PSO)辨识出模型的未知参数。最后,实验的结果验证了模型的可行性。展开更多
Space-time signal processing based on multiple-input multiple-output(MIMO) systems is an active research field in which interfering signals are cancelled and multiuser detection is achieved using space diversity. In...Space-time signal processing based on multiple-input multiple-output(MIMO) systems is an active research field in which interfering signals are cancelled and multiuser detection is achieved using space diversity. In a Rayleigh fading channel, space-time block cedes using multiple transmitting antennas can improve system performance and reduce bit-error-rate for multiuser detection. In this paper, several antenna configurations are designed for DS-CDMA communication in MIMO systems. Space-time linear multinser detection and space-time serial interference cancellation multiuser detection are simulated. Bit-error-rate and computation complexities of the two methods are compared. Conclusions are given in the end.展开更多
An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing s...An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.展开更多
Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multipl...Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multiple Input Multiple Output (MIMO) communication systems. MIMO systems utilize Space Time Block Codes (STBC) as one of the leading ways to obtain higher data rates with limited bandwidth and power. With several STBC methods currently available, this paper analyzes simulations using Orthogonal Space Time Block Codes (OSTBC) in Rayleigh fading channels to evaluate the performance of MIMO systems. The selection to use a Rayleigh fading channel as a model for a non-line-of-sight (nLOS) environment is selected to mimic installations where a large number of signal paths and reflections are expected. All simulations are coded, generated and plotted using MATLAB resulting in graphical data representing the bit-error rate (BER) to signal-to-noise ratio (Eb/N<sub>0</sub>) or SNR. Each simulation captures how different configurations of key variables including code rate, diversity and antenna count can impact system performance. Four modulation schemes (BPSK, QPSK, 16-QAM and 64-QAM) are included in each simulation. Conclusive evidence based upon these simulations suggests higher diversity gains were achieved with a greater number of antennas. The most significant factor for increasing system performance was using a lower count of transmit antennas with a higher count of receive antennas.展开更多
Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by ser...Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.展开更多
文摘In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.
文摘针对多输入多输出正交时频空间(multiple-input multiple-output orthogonal time frequency space,MIMO-OTFS)系统由最大时延、多普勒扩展、天线数量增加带来信道估计计算开销大、准确率下降的问题,提出了一种基于感知辅助和原子选择门限的广义正交匹配追踪(sensing aided generalized orthogonal matching pursuit algorithm based on atomic threshold,SA-TGOMP)信道估计算法。该算法首先将雷达探测的用户和周围环境信息转化为OTFS信道的初始索引集,然后引入以固定值选取相关性原子进行迭代的策略和原子选择门限进行支撑集更新。实验结果表明,本文算法能够有效提高信道估计精度的同时减少导频开销。
文摘针对压电陶瓷的迟滞非线性,建立了基于一种加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLS-SVM)的迟滞动态模型。为了能够方便使用支持向量机,应用了一种动态算子,将迟滞的多值映射变成一一映射。并在传统的最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的基础上加入了支持向量度,以区分数据的重要程度。为了减轻计算量,将数据按照支持向量度从大到小排序,其中支持向量度接近于零的数据被视作非支持向量。使用剪枝法按一定比例减去支持向量度比较小的数据,利用粒子群算法(Particle Swarm Optimization, PSO)辨识出模型的未知参数。最后,实验的结果验证了模型的可行性。
文摘Space-time signal processing based on multiple-input multiple-output(MIMO) systems is an active research field in which interfering signals are cancelled and multiuser detection is achieved using space diversity. In a Rayleigh fading channel, space-time block cedes using multiple transmitting antennas can improve system performance and reduce bit-error-rate for multiuser detection. In this paper, several antenna configurations are designed for DS-CDMA communication in MIMO systems. Space-time linear multinser detection and space-time serial interference cancellation multiuser detection are simulated. Bit-error-rate and computation complexities of the two methods are compared. Conclusions are given in the end.
基金supported by the State Key Laboratory for Mobile Communication Open Foundation(N200502)the Natural Science Foundation of Jiangsu Province(BK2007192).
文摘An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.
文摘Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multiple Input Multiple Output (MIMO) communication systems. MIMO systems utilize Space Time Block Codes (STBC) as one of the leading ways to obtain higher data rates with limited bandwidth and power. With several STBC methods currently available, this paper analyzes simulations using Orthogonal Space Time Block Codes (OSTBC) in Rayleigh fading channels to evaluate the performance of MIMO systems. The selection to use a Rayleigh fading channel as a model for a non-line-of-sight (nLOS) environment is selected to mimic installations where a large number of signal paths and reflections are expected. All simulations are coded, generated and plotted using MATLAB resulting in graphical data representing the bit-error rate (BER) to signal-to-noise ratio (Eb/N<sub>0</sub>) or SNR. Each simulation captures how different configurations of key variables including code rate, diversity and antenna count can impact system performance. Four modulation schemes (BPSK, QPSK, 16-QAM and 64-QAM) are included in each simulation. Conclusive evidence based upon these simulations suggests higher diversity gains were achieved with a greater number of antennas. The most significant factor for increasing system performance was using a lower count of transmit antennas with a higher count of receive antennas.
基金supported by the National Natural Science Foundation of China (Grant Nos.60332030, 60572157), and the National High-TechnologY Research and Development of China (Grant No.863-2003AA123310)
文摘Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.