On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation f...On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.展开更多
Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal perform...Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal.展开更多
The complexation of phosphates in the quartz-metal ion-H_2O-oleate system was studied. Computer assisted calculations with the aid of the advanced program SOLGASWATER and known equilibrium constants were used to evalu...The complexation of phosphates in the quartz-metal ion-H_2O-oleate system was studied. Computer assisted calculations with the aid of the advanced program SOLGASWATER and known equilibrium constants were used to evaluate the mechanism,The calculation results revealed that in the presence of a certain amount of phosphates, metal ions adsorbed at the quartz-H_2O interface will be transferred into solution.Thus the competi- tion for metal ions between phosphates and the quartz surface leads to surface deactivation and re- duced floatability.Various distribution diagrams clearly demonstrate the change of surface complexation as a function of added phosphate concentration.The deactivation products were also evaluated.展开更多
The aim of this study was to investigate the inhibitory effect of heparin/fibronectin (Hep/Fn) complexes on neointimal hyperplasia following endovascular intervention. Hep/Fn complexes were immobilized onto titanium...The aim of this study was to investigate the inhibitory effect of heparin/fibronectin (Hep/Fn) complexes on neointimal hyperplasia following endovascular intervention. Hep/Fn complexes were immobilized onto titanium (Ti) surfaces, with subsequent X-ray photoelectron spectroscopy (XPS), Toluidine Blue 0 (TBO) and immunohistochemistry methods were used to characterize surface properties. Smooth muscle cell (SMC) cultures were used to evaluate the effect of Hep/Fn complexes on SMC proliferation. Results showed that Hep/Fn complexes successfully immobilized onto Ti surfaces and resulted in an inhibition of SMC proliferation. This study suggests that Hep/Fn surface-immobilized biomaterials develop as a new generation of biomaterials to prevent neointimal hyperplasia, particularly for use in cardiovascular implants.展开更多
In areas with a complex surface,the acquisition and processing of seismic data is a great challenge.Although elevation-static corrections can be used to eliminate the influences of topography,the distortions of seismi...In areas with a complex surface,the acquisition and processing of seismic data is a great challenge.Although elevation-static corrections can be used to eliminate the influences of topography,the distortions of seismic wavefields caused by simple vertical time shifts still greatly degrade the quality of the migrated images.Ray-based migration methods which can extrapolate and image the wavefields directly from the rugged topography are efficient ways to solve the problems mentioned above.In this paper,we carry out a study of prestack Gaussian beam depth migration under complex surface conditions.We modify the slant stack formula in order to contain the information of surface elevations and get an improved method with more accuracy by compositing local plane-wave components directly from the complex surface.First,we introduce the basic rules and computational procedures of conventional Gaussian beam migration.Then,we give the original method of Gaussian beam migration under complex surface conditions and an improved method in this paper.Finally,we validate the effectiveness of the improved method with trials of model and real data.展开更多
To improve the grinding quality of robotic belt grinding systems for the workpieces with complex shaped surfaces, new concepts of the dexterity grinding point and the dexterity grinding space are proposed and their ma...To improve the grinding quality of robotic belt grinding systems for the workpieces with complex shaped surfaces, new concepts of the dexterity grinding point and the dexterity grinding space are proposed and their mathematical descriptions are defined. Factors influencing the dexterity grinding space are analyzed. And a method to determine the necessary dexterity grinding space is suggested. Based on particle swarm optimization (PSO) method, a strategy to optimize the grinding robot structural dimensions and position with respect to the grinding wheel is put forward to obtain the necessary dexterity grinding space. Finally, to grind an aerial engine blade, a dedicated PPPRRR (P: prismatic R: rotary) grinding robot structural dimensions and position with respect to the grinding wheel are optimized using the above strategy. According to simulation results, if the blade is placed within the dexterity grinding space, only one gripper and one grinding machine are needed to grind its complex shaped surfaces.展开更多
Taking AutoCAD2000 as platform, an algorithm for the reconstruction ofsurface from scattered data points based on VBA is presented. With this core technology customerscan be free from traditional AutoCAD as an electro...Taking AutoCAD2000 as platform, an algorithm for the reconstruction ofsurface from scattered data points based on VBA is presented. With this core technology customerscan be free from traditional AutoCAD as an electronic board and begin to create actual presentationof real-world objects. VBA is not only a very powerful tool of development, but with very simplesyntax. Associating with those solids, objects and commands of AutoCAD 2000, VBA notably simplifiesprevious complex algorithms, graphical presentations and processing, etc. Meanwhile, it can avoidappearance of complex data structure and data format in reverse design with other modeling software.Applying VBA to reverse engineering can greatly improve modeling efficiency and facilitate surfacereconstruction.展开更多
The first three-dimensional interaction potential energy surface (PES) of the Ar2-Ne complex is developed using the single and double excitation coupled cluster theory with noniterative treatment of triple excitatio...The first three-dimensional interaction potential energy surface (PES) of the Ar2-Ne complex is developed using the single and double excitation coupled cluster theory with noniterative treatment of triple excitations CCSD(T). The aug-cc-pVQZ basis sets are employed for all atoms, including an additional (3s3p2d2flg) set of midpoint bond functions. The calculated single point energies are fitted to an analytic two-dimensional potential model at each of seven fixed rAr~ values. The seven model potentials are then used to construct the three- dimensional PES by interpolating along (r-re) using a sixth-order polynomial. The PES is used in the following rovibrational energy levels calculations. The comparisons of theoretical transition frequencies and spectroscopic constants with the experimental results are given.展开更多
In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs a...In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs are either too slow at replanning or unreliable in changing environments with multiple dynamic obstacles.In this study,we developed a novel path planning method based on the D^(*) lite algorithm for real-time path planning of USVs in complex environments.The proposed method has the following advantages:(1)the computational time for replanning is reduced significantly owing to the use of an incremental algorithm and a new method for modelling dynamic obstacles;(2)a constrained artificial potential field method is employed to enhance the safety of the planned paths;and(3)the method is practical in terms of vehicle performance.The performance of the proposed method was evaluated through simulations and compared with those of existing algorithms.The simulation results confirmed the efficiency of the method for real-time path planning of USVs in complex environments.展开更多
During the chemical weathering of the uranium mill tailings,released uranium could be immobilized by the newly formed secondary minerals such as oxyhydroxides.A deeper understanding of the interaction between uranium ...During the chemical weathering of the uranium mill tailings,released uranium could be immobilized by the newly formed secondary minerals such as oxyhydroxides.A deeper understanding of the interaction between uranium and common oxyhydroxides under environmental conditions is necessary.In this work,uranium sorption behaviors on Al-,Mn-and Fe-oxyhydroxide minerals(boehmite,manganite,goethite,and lepidocrocite)were investigated by batch experiments.Results showed that the uranium sorption on Al-oxyhydroxide behaved significantly differently from the other three minerals.The sorption edge of the Mn-and Fe-oxyhydroxides located around pH 5,while the sorption edge of boehmite shifted about 1.5 pH unit to near neutral.The sorption isotherms of uranium on manganite,goethite and lepidocrocite at pH 5.0 could be well fitted by the Langmuir model.Instead of surface complexation,sorption on boehmite happened mainly by uranium-bearing carbonates and hydroxides precipitation as illustrated by the characterization results.Both carbonate and phosphate strongly affected the uranium sorption behavior.The removal efficiency of uranium by boehmite exceeded 98%after three sorption-desorption cycles,indicating it may be a potential material for uranium removal and recovery.展开更多
Large,3D curved electronics are a trend of the microelectronic industry due to their unique ability to conformally coexist with complex surfaces while retaining the electronic functions of 2D planar integrated circuit...Large,3D curved electronics are a trend of the microelectronic industry due to their unique ability to conformally coexist with complex surfaces while retaining the electronic functions of 2D planar integrated circuit technologies.However,these curved electronics present great challenges to the fabrication processes.Here,we propose a reconfigurable,mask-free,conformal fabrication strategy with a robot-like system,called robotized‘transfer-and-jet’printing,to assemble diverse electronic devices on complex surfaces.This novel method is a ground-breaking advance with the unique capability to integrate rigid chips,flexible electronics,and conformal circuits on complex surfaces.Critically,each process,including transfer printing,inkjet printing,and plasma treating,are mask-free,digitalized,and programmable.The robotization techniques,including measurement,surface reconstruction and localization,and path programming,break through the fundamental constraints of 2D planar microfabrication in the context of geometric shape and size.The transfer printing begins with the laser lift-off of rigid chips or flexible electronics from donor substrates,which are then transferred onto a curved surface via a dexterous robotic palm.Then the robotic electrohydrodynamic printing directly writes submicrometer structures on the curved surface.Their permutation and combination allow versatile conformal microfabrication.Finally,robotized hybrid printing is utilized to successfully fabricate a conformal heater and antenna on a spherical surface and a flexible smart sensing skin on a winged model,where the curved circuit,flexible capacitive and piezoelectric sensor arrays,and rigid digital–analog conversion chips are assembled.Robotized hybrid printing is an innovative printing technology,enabling additive,noncontact and digital microfabrication for 3D curved electronics.展开更多
Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex ...Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex thin-walled components creates a bottleneck that needs to be solved urgently in machinery manufacturing.To address this problem,the collaborative manufacturing of structure shape and surface integrity has emerged as a new process that can shorten processing cycles,improve machining qualities,and reduce costs.This paper summarises the research status on the material removal mechanism,precision control of structure shape,machined surface integrity control and intelligent process control technology of complex thin-walled components.Numerous solutions and technical approaches are then put forward to solve the critical problems in the high-performance manufacturing of complex thin-wall components.The development status,challenge and tendency of collaborative manufacturing technologies in the high-efficiency and quality manufacturing of complex thin-wall components is also discussed.展开更多
Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research top...Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.展开更多
The crystal structure of one novel Mn(II) complex, [Mn(pmta)_3]_2[Mn(H_2O)_6]·4H_2O(1), is reported(Hpmta = 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid). In the title compound, the asymmetric ...The crystal structure of one novel Mn(II) complex, [Mn(pmta)_3]_2[Mn(H_2O)_6]·4H_2O(1), is reported(Hpmta = 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid). In the title compound, the asymmetric unit consists of a [Mn(pmta_)3]ˉ anion, half [Mn(H_2O)_6]^(2+) counter cation and two lattice H_2O molecules, and the intra- and intermolecular hydrogen bonds connect the complex into a supramolecular structure. The liquid-state fluorescence spectra of complex 1 have been determined. Hirshfeld surface analysis was also studied. The main intermolecular interactions in the complex are O···H and H···H contacts.展开更多
Irradiated by infrared laser, the surface reducibility and adsorbability of Cu-Cr complex could be improved, owing to the interaction of photo-fragmentation and laser texturing. Analyzed by the binding energy spectra ...Irradiated by infrared laser, the surface reducibility and adsorbability of Cu-Cr complex could be improved, owing to the interaction of photo-fragmentation and laser texturing. Analyzed by the binding energy spectra and the auger spectra, the valence states of chromium ion and copper ion were+3 and+1 after radiation respectively, which still had the reducibility to release electrons. In contrast with the near-infrared(NIR)1 064 nm and mid-infrared(MIR) 10 600 nm laser at the same average output power of 15 W, the reduced metal percentage in the Cu-Cr complex was obviously distinguished at the depth from nanometer to micron. After chemical plating, the average coating thickness and mean-square deviation of the NIR sample were 11.61 μm and 0.30 for copper layer, and 2.69 μm and 0.08 for nickel layer. The results were much better than those of the MIR sample.展开更多
The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(Ca...The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.展开更多
Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.D...Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.Direct manufacturing often leads to high internal surface roughness,which traditional finishing and measuring methods cannot adequately address due to the decreasing size and increasing complexity of internal structures.This is especially true for components like pipes with large aspect ratios,extremely small deep holes,multi-stage bends,cross pipes,and array holes.To meet the high-performance manufacturing demands of these parts,advanced internal surface finishing and roughness measurement technologies have gained significant attention.This review focuses on the challenges and solutions related to internal surface parts with various apertures and complex structures.Internal surface finishing methods are categorized into mechanical finishing,fluid-based finishing,and energy-field-based finishing based on their characteristics.Roughness measurement technologies are divided into tool-probing and non-probing methods.The principles,required equipment,and key parameters of each finishing and measurement approach are discussed in detail.Additionally,the advantages and limitations of these methods are summarized,and future trends are forecasted.This paper serves as a comprehensive guide for researchers and engineers aiming to enhance the internal surface quality of complex structure parts.展开更多
This paper deals with the infrared spectra of " amino acid- clay , calcium carbonate and y-AlOOH" and " Cu (II )-clay-amino acid" model systems, and shows that the model of the ternary surface comp...This paper deals with the infrared spectra of " amino acid- clay , calcium carbonate and y-AlOOH" and " Cu (II )-clay-amino acid" model systems, and shows that the model of the ternary surface complex is M-OHLCu (L = amino acid) for marine solid particle-Cu (II)-amino acid. Study of the formation mechanism of the ternary surface complex shows that the specific surface area , and especially the intrinsic acidity constant, determine whether the ternary surface complex is easily formed, and that factor, FTSC,quantifies the relationship between the promoting effect of organics on Mt-marine solid particle ion exchange and the intrinsic acidity constant and specific surface area.展开更多
Aimed at inner quality controlling for complex surface parts, an ultrasonic testing system for complex surface parts has been developed using ultrasonic NDT(Non-destructive Testing)which has features of strong penetra...Aimed at inner quality controlling for complex surface parts, an ultrasonic testing system for complex surface parts has been developed using ultrasonic NDT(Non-destructive Testing)which has features of strong penetration, well direction, high sensitivity, low cost, and harmless to people and material. The technologies of the computer, NC (Numerical control), precision mechanism, signal analysis and processing were integrated in the testing system. The system includes a PC, system software, ultrasonic data acquisition card, stepper motor drive card and five-axis precision mechanical device, etc. The software was developed using WIN98-based VC++. According to CAD data of the parts and interpolation methods, the scanning programs can be programmed. The five-axis scanning system is driven by the CNC(computer numerical control) system to control the attitude of ultrasonic probes. The system’s automatic scanning for complex surface parts, real-time acquiring ultrasonic data and automatic identifying flaw signal have been realized. This system can be used not only for testing complex surface parts, but for testing random curve parts. With fast testing speed, high sensitivity, high testing precision and high reliability, the system has a wide adaptability.展开更多
Based on the infrared characterization of methyl orange adsorption on TiO 2 surface and the titration of TiO 2, the triple layer model of methyl orange adsorption on TiO 2 was established according to electric double ...Based on the infrared characterization of methyl orange adsorption on TiO 2 surface and the titration of TiO 2, the triple layer model of methyl orange adsorption on TiO 2 was established according to electric double theory. The software FITEQL3.1 was applied to calculate the distribution of organic adsorption on TiO 2 surface by introducing dummy components to help to overcome mathematical difficulties. It is shown that the chem. adsorption species of methyl orange have a great adsorption amount. The adsorption constants of three kinds of surface complexation expressed as SOH +org -,SOH 2org 2 and SOHorg - are 5.98, 17.57 and -4.2, respectively.展开更多
基金Projects(51775445,52175435)supported by the National Natural Science Foundation of ChinaProject(CX2023051)supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China。
文摘On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1205602,and 2023YFC3707801)the National Natural Science Foundation of China(Nos.U22A20402,22376073,21936003 and 22306119)China Postdoctoral Science Foundation(No.2023T160419).
文摘Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal.
文摘The complexation of phosphates in the quartz-metal ion-H_2O-oleate system was studied. Computer assisted calculations with the aid of the advanced program SOLGASWATER and known equilibrium constants were used to evaluate the mechanism,The calculation results revealed that in the presence of a certain amount of phosphates, metal ions adsorbed at the quartz-H_2O interface will be transferred into solution.Thus the competi- tion for metal ions between phosphates and the quartz surface leads to surface deactivation and re- duced floatability.Various distribution diagrams clearly demonstrate the change of surface complexation as a function of added phosphate concentration.The deactivation products were also evaluated.
基金supported by the financial support of Natural Science Research Program of Jiangsu Education Department(No.13KJB310014)Natural Science Foundation of Jiangsu Province(BK20140429)the Natural Science Foundation of Nantong University(No.14ZY015,No.13R23)
文摘The aim of this study was to investigate the inhibitory effect of heparin/fibronectin (Hep/Fn) complexes on neointimal hyperplasia following endovascular intervention. Hep/Fn complexes were immobilized onto titanium (Ti) surfaces, with subsequent X-ray photoelectron spectroscopy (XPS), Toluidine Blue 0 (TBO) and immunohistochemistry methods were used to characterize surface properties. Smooth muscle cell (SMC) cultures were used to evaluate the effect of Hep/Fn complexes on SMC proliferation. Results showed that Hep/Fn complexes successfully immobilized onto Ti surfaces and resulted in an inhibition of SMC proliferation. This study suggests that Hep/Fn surface-immobilized biomaterials develop as a new generation of biomaterials to prevent neointimal hyperplasia, particularly for use in cardiovascular implants.
基金supported by the National 863 Program of China(Grant No.2007AA060502)the National 973 Program of China(Grant No.2007CB209605)the Graduate Student Innovation Fund of China University of Petroleum(EastChina)(Grant No.S2010-1).
文摘In areas with a complex surface,the acquisition and processing of seismic data is a great challenge.Although elevation-static corrections can be used to eliminate the influences of topography,the distortions of seismic wavefields caused by simple vertical time shifts still greatly degrade the quality of the migrated images.Ray-based migration methods which can extrapolate and image the wavefields directly from the rugged topography are efficient ways to solve the problems mentioned above.In this paper,we carry out a study of prestack Gaussian beam depth migration under complex surface conditions.We modify the slant stack formula in order to contain the information of surface elevations and get an improved method with more accuracy by compositing local plane-wave components directly from the complex surface.First,we introduce the basic rules and computational procedures of conventional Gaussian beam migration.Then,we give the original method of Gaussian beam migration under complex surface conditions and an improved method in this paper.Finally,we validate the effectiveness of the improved method with trials of model and real data.
基金National Natural Science Foundation of China (51075013) Beijing Natural Science Foundation (4102035)+1 种基金 Fundamental Research Funds for the Central Universities (YWF-10-01-A09) Research Foundation of State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University)
文摘To improve the grinding quality of robotic belt grinding systems for the workpieces with complex shaped surfaces, new concepts of the dexterity grinding point and the dexterity grinding space are proposed and their mathematical descriptions are defined. Factors influencing the dexterity grinding space are analyzed. And a method to determine the necessary dexterity grinding space is suggested. Based on particle swarm optimization (PSO) method, a strategy to optimize the grinding robot structural dimensions and position with respect to the grinding wheel is put forward to obtain the necessary dexterity grinding space. Finally, to grind an aerial engine blade, a dedicated PPPRRR (P: prismatic R: rotary) grinding robot structural dimensions and position with respect to the grinding wheel are optimized using the above strategy. According to simulation results, if the blade is placed within the dexterity grinding space, only one gripper and one grinding machine are needed to grind its complex shaped surfaces.
文摘Taking AutoCAD2000 as platform, an algorithm for the reconstruction ofsurface from scattered data points based on VBA is presented. With this core technology customerscan be free from traditional AutoCAD as an electronic board and begin to create actual presentationof real-world objects. VBA is not only a very powerful tool of development, but with very simplesyntax. Associating with those solids, objects and commands of AutoCAD 2000, VBA notably simplifiesprevious complex algorithms, graphical presentations and processing, etc. Meanwhile, it can avoidappearance of complex data structure and data format in reverse design with other modeling software.Applying VBA to reverse engineering can greatly improve modeling efficiency and facilitate surfacereconstruction.
文摘The first three-dimensional interaction potential energy surface (PES) of the Ar2-Ne complex is developed using the single and double excitation coupled cluster theory with noniterative treatment of triple excitations CCSD(T). The aug-cc-pVQZ basis sets are employed for all atoms, including an additional (3s3p2d2flg) set of midpoint bond functions. The calculated single point energies are fitted to an analytic two-dimensional potential model at each of seven fixed rAr~ values. The seven model potentials are then used to construct the three- dimensional PES by interpolating along (r-re) using a sixth-order polynomial. The PES is used in the following rovibrational energy levels calculations. The comparisons of theoretical transition frequencies and spectroscopic constants with the experimental results are given.
基金financially supported by the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(Grant No.19X100040072)the Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education(Grant No.MIES-2020-07)。
文摘In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs are either too slow at replanning or unreliable in changing environments with multiple dynamic obstacles.In this study,we developed a novel path planning method based on the D^(*) lite algorithm for real-time path planning of USVs in complex environments.The proposed method has the following advantages:(1)the computational time for replanning is reduced significantly owing to the use of an incremental algorithm and a new method for modelling dynamic obstacles;(2)a constrained artificial potential field method is employed to enhance the safety of the planned paths;and(3)the method is practical in terms of vehicle performance.The performance of the proposed method was evaluated through simulations and compared with those of existing algorithms.The simulation results confirmed the efficiency of the method for real-time path planning of USVs in complex environments.
基金National Natural Science Foundation of China(NSFC,No.11475008)。
文摘During the chemical weathering of the uranium mill tailings,released uranium could be immobilized by the newly formed secondary minerals such as oxyhydroxides.A deeper understanding of the interaction between uranium and common oxyhydroxides under environmental conditions is necessary.In this work,uranium sorption behaviors on Al-,Mn-and Fe-oxyhydroxide minerals(boehmite,manganite,goethite,and lepidocrocite)were investigated by batch experiments.Results showed that the uranium sorption on Al-oxyhydroxide behaved significantly differently from the other three minerals.The sorption edge of the Mn-and Fe-oxyhydroxides located around pH 5,while the sorption edge of boehmite shifted about 1.5 pH unit to near neutral.The sorption isotherms of uranium on manganite,goethite and lepidocrocite at pH 5.0 could be well fitted by the Langmuir model.Instead of surface complexation,sorption on boehmite happened mainly by uranium-bearing carbonates and hydroxides precipitation as illustrated by the characterization results.Both carbonate and phosphate strongly affected the uranium sorption behavior.The removal efficiency of uranium by boehmite exceeded 98%after three sorption-desorption cycles,indicating it may be a potential material for uranium removal and recovery.
基金The authors acknowledge support from the National Nat-ural Science Foundation of China(51635007,51925503,51705179)Natural Science Foundation of Hubei Province of China(2020CFA028).
文摘Large,3D curved electronics are a trend of the microelectronic industry due to their unique ability to conformally coexist with complex surfaces while retaining the electronic functions of 2D planar integrated circuit technologies.However,these curved electronics present great challenges to the fabrication processes.Here,we propose a reconfigurable,mask-free,conformal fabrication strategy with a robot-like system,called robotized‘transfer-and-jet’printing,to assemble diverse electronic devices on complex surfaces.This novel method is a ground-breaking advance with the unique capability to integrate rigid chips,flexible electronics,and conformal circuits on complex surfaces.Critically,each process,including transfer printing,inkjet printing,and plasma treating,are mask-free,digitalized,and programmable.The robotization techniques,including measurement,surface reconstruction and localization,and path programming,break through the fundamental constraints of 2D planar microfabrication in the context of geometric shape and size.The transfer printing begins with the laser lift-off of rigid chips or flexible electronics from donor substrates,which are then transferred onto a curved surface via a dexterous robotic palm.Then the robotic electrohydrodynamic printing directly writes submicrometer structures on the curved surface.Their permutation and combination allow versatile conformal microfabrication.Finally,robotized hybrid printing is utilized to successfully fabricate a conformal heater and antenna on a spherical surface and a flexible smart sensing skin on a winged model,where the curved circuit,flexible capacitive and piezoelectric sensor arrays,and rigid digital–analog conversion chips are assembled.Robotized hybrid printing is an innovative printing technology,enabling additive,noncontact and digital microfabrication for 3D curved electronics.
基金supported by the National Natural Science Foundation of China(Nos.51921003,92160301,52175415 and 52205475)the Science Center for Gas Turbine Project(No.P2022-A-IV-002-001)Natural Science Foundation of Jiangsu Province(No.BK20210295).
文摘Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex thin-walled components creates a bottleneck that needs to be solved urgently in machinery manufacturing.To address this problem,the collaborative manufacturing of structure shape and surface integrity has emerged as a new process that can shorten processing cycles,improve machining qualities,and reduce costs.This paper summarises the research status on the material removal mechanism,precision control of structure shape,machined surface integrity control and intelligent process control technology of complex thin-walled components.Numerous solutions and technical approaches are then put forward to solve the critical problems in the high-performance manufacturing of complex thin-wall components.The development status,challenge and tendency of collaborative manufacturing technologies in the high-efficiency and quality manufacturing of complex thin-wall components is also discussed.
基金supported by the National Natural Science Foundation of China(71702072 71811540414+2 种基金 71573115)the Natural Science Foundation for Jiangsu Institutions(BK20170810)the Ministry of Education of Humanities and Social Science Planning Fund(18YJA630008)
文摘Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.
基金supported by the National Natural Science Foundation of China(No.20801012)New Energy Technology Co.Ltd.of Ai Naji of Jiangsu Province(No.8507040091)
文摘The crystal structure of one novel Mn(II) complex, [Mn(pmta)_3]_2[Mn(H_2O)_6]·4H_2O(1), is reported(Hpmta = 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid). In the title compound, the asymmetric unit consists of a [Mn(pmta_)3]ˉ anion, half [Mn(H_2O)_6]^(2+) counter cation and two lattice H_2O molecules, and the intra- and intermolecular hydrogen bonds connect the complex into a supramolecular structure. The liquid-state fluorescence spectra of complex 1 have been determined. Hirshfeld surface analysis was also studied. The main intermolecular interactions in the complex are O···H and H···H contacts.
基金Supported by the National Basic Research Program of China("973"Program,No.2010CB327800)National Natural Science Foundation of China(No.11004150)Postdoctoral Science Foundation of China(No.20090460690)
文摘Irradiated by infrared laser, the surface reducibility and adsorbability of Cu-Cr complex could be improved, owing to the interaction of photo-fragmentation and laser texturing. Analyzed by the binding energy spectra and the auger spectra, the valence states of chromium ion and copper ion were+3 and+1 after radiation respectively, which still had the reducibility to release electrons. In contrast with the near-infrared(NIR)1 064 nm and mid-infrared(MIR) 10 600 nm laser at the same average output power of 15 W, the reduced metal percentage in the Cu-Cr complex was obviously distinguished at the depth from nanometer to micron. After chemical plating, the average coating thickness and mean-square deviation of the NIR sample were 11.61 μm and 0.30 for copper layer, and 2.69 μm and 0.08 for nickel layer. The results were much better than those of the MIR sample.
基金National Public Benefit Research Foundation of China (2008416048GYHY201006035)
文摘The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.
基金the financial supports from National Key R&D Program of China(No.2022YFB3403301)the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(No.52311530080)。
文摘Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.Direct manufacturing often leads to high internal surface roughness,which traditional finishing and measuring methods cannot adequately address due to the decreasing size and increasing complexity of internal structures.This is especially true for components like pipes with large aspect ratios,extremely small deep holes,multi-stage bends,cross pipes,and array holes.To meet the high-performance manufacturing demands of these parts,advanced internal surface finishing and roughness measurement technologies have gained significant attention.This review focuses on the challenges and solutions related to internal surface parts with various apertures and complex structures.Internal surface finishing methods are categorized into mechanical finishing,fluid-based finishing,and energy-field-based finishing based on their characteristics.Roughness measurement technologies are divided into tool-probing and non-probing methods.The principles,required equipment,and key parameters of each finishing and measurement approach are discussed in detail.Additionally,the advantages and limitations of these methods are summarized,and future trends are forecasted.This paper serves as a comprehensive guide for researchers and engineers aiming to enhance the internal surface quality of complex structure parts.
文摘This paper deals with the infrared spectra of " amino acid- clay , calcium carbonate and y-AlOOH" and " Cu (II )-clay-amino acid" model systems, and shows that the model of the ternary surface complex is M-OHLCu (L = amino acid) for marine solid particle-Cu (II)-amino acid. Study of the formation mechanism of the ternary surface complex shows that the specific surface area , and especially the intrinsic acidity constant, determine whether the ternary surface complex is easily formed, and that factor, FTSC,quantifies the relationship between the promoting effect of organics on Mt-marine solid particle ion exchange and the intrinsic acidity constant and specific surface area.
文摘Aimed at inner quality controlling for complex surface parts, an ultrasonic testing system for complex surface parts has been developed using ultrasonic NDT(Non-destructive Testing)which has features of strong penetration, well direction, high sensitivity, low cost, and harmless to people and material. The technologies of the computer, NC (Numerical control), precision mechanism, signal analysis and processing were integrated in the testing system. The system includes a PC, system software, ultrasonic data acquisition card, stepper motor drive card and five-axis precision mechanical device, etc. The software was developed using WIN98-based VC++. According to CAD data of the parts and interpolation methods, the scanning programs can be programmed. The five-axis scanning system is driven by the CNC(computer numerical control) system to control the attitude of ultrasonic probes. The system’s automatic scanning for complex surface parts, real-time acquiring ultrasonic data and automatic identifying flaw signal have been realized. This system can be used not only for testing complex surface parts, but for testing random curve parts. With fast testing speed, high sensitivity, high testing precision and high reliability, the system has a wide adaptability.
基金Project( 0 10 873and 0 10 15 1)supportedbytheNaturalScienceFoundationofGuandongProvince China +1 种基金Project(A3 0 40 3 0 1)supportedbytheScience&TechnologyDevelopmentFoundationofGuangdongProvince China
文摘Based on the infrared characterization of methyl orange adsorption on TiO 2 surface and the titration of TiO 2, the triple layer model of methyl orange adsorption on TiO 2 was established according to electric double theory. The software FITEQL3.1 was applied to calculate the distribution of organic adsorption on TiO 2 surface by introducing dummy components to help to overcome mathematical difficulties. It is shown that the chem. adsorption species of methyl orange have a great adsorption amount. The adsorption constants of three kinds of surface complexation expressed as SOH +org -,SOH 2org 2 and SOHorg - are 5.98, 17.57 and -4.2, respectively.