A compound oscillatory roller reducer(CORR)with a first-stage gear transmission and a second-stage oscillatory roller transmission is presented.The transmission principle of oscillatory roller transmission is introduc...A compound oscillatory roller reducer(CORR)with a first-stage gear transmission and a second-stage oscillatory roller transmission is presented.The transmission principle of oscillatory roller transmission is introduced,and the tooth profile equation of the inner gear is derived.The analytical model of mesh force considering the installation errors and manufacturing errors is proposed.Then,parametric studies considering different errors on the mesh force are conducted.Results show that the design parameters are significant factors for mesh force.The mesh force is reduced by 17%as the eccentricity of disk cam increases from 2.5 mm to 4 mm.When the radius of the movable roller increases from 7 mm to 20 mm,the mesh force decreases by 8%.As the radius of disk cam increases from 125 mm to 170 mm,the mesh force is decreased by 26.5%.For the impacts of errors,the mesh force has a noticeable fluctuation when these errors exist including the manufacturing error of disk cam,the installation error of disk cam and the manufacturing error of movable roller change.The prototype of the reducer is manufactured and preliminary run-in test proved the feasibility of the transmission principle.展开更多
Intensification of pollution loading worldwide has promoted an escalation of different types of disease-causing microorganisms, such as harmful algal blooms(HABs), instigating detrimental impacts on the quality of rec...Intensification of pollution loading worldwide has promoted an escalation of different types of disease-causing microorganisms, such as harmful algal blooms(HABs), instigating detrimental impacts on the quality of receiving surface waters. Formation of unwanted disinfection by-products(DBPs) resulting from conventional disinfection technologies reveals the need for the development of new sustainable alternatives. Quaternary Ammonium Compounds(QACs) are cationic surfactants widely known for their effective biocidal properties at the ppm level. In this study, a novel silica-based antimicrobial nanofilm was developed using a composite of silica-modified QAC(Fixed-Quat) and applied to a fiberglass mesh as an active surface via sol–gel technique. The synthesized Fixed-Quat nanocoating was found to be effective against E. coli with an inactivation rate of 1.3 × 10^(-3) log reduction/cm min. The Fixed-Quat coated fiberglass mesh also demonstrated successful control of Microcystis aeruginosa with more than 99% inactivation after 10 hr of exposure.The developed antimicrobial mesh was also evaluated with wild-type microalgal species collected in a water body experiencing HABs, obtaining a 97% removal efficiency. Overall,the silica-functionalized Fixed-Quat nanocoating showed promising antimicrobial properties for water disinfection and HABs control, while decreasing concerns related to DBPs formation and the possible release of toxic nanomaterials into the environment.展开更多
In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are ...In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are connected either directly or through some intermediate devices.These terminating and intermediate devices are considered as vertices of graph whereas wired or wireless connections among these devices are shown as edges of graph.Topological indices are used to reflect structural property of graphs in form of one real number.This structural invariant has revolutionized the field of chemistry to identify molecular descriptors of chemical compounds.These indices are extensively used for establishing relationships between the structure of nanotubes and their physico-chemical properties.In this paper a representation of sodium chloride(NaCl)is studied,because structure of NaCl is same as the Cartesian product of three paths of length exactly like a mesh network.In this way the general formula obtained in this paper can be used in chemistry as well as for any degree-based topological polynomials of three-dimensional mesh networks.展开更多
The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which re...The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which require careful analysis.In the present work,the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions.While a sliding mesh method is used to deal with the rotating coaxial rotors,the Reynolds-Averaged Navier-Stokes(RANS)equations are solved for the flow field.The Caradonna&Tung(CT)rotor and Harrington-2 coaxial rotor are considered to validate the numerical method.The results show that the aerodynamic interaction of the two rigid coaxial rotors significantly influences hover’s induced velocity and pressure distribution.In addition,the average thrust of an isolated coaxial rotor is smaller than that of the corresponding isolated single rotor.Compared with the isolated coaxial rotor,the existence of the fuselage results in an increment in the thrust of the rotors.Furthermore,these interactions between the components of the considered coaxial compound helicopter decay with an increase in the advance ratio.展开更多
基金Supported by Research and Development Plans in Key Areas of Guangdong(Grant No.2019B090917002)Key Research and Development Project of Chongqing Science and Technology Program(Grant No.cstc2018jszx-cyztzxX0038).
文摘A compound oscillatory roller reducer(CORR)with a first-stage gear transmission and a second-stage oscillatory roller transmission is presented.The transmission principle of oscillatory roller transmission is introduced,and the tooth profile equation of the inner gear is derived.The analytical model of mesh force considering the installation errors and manufacturing errors is proposed.Then,parametric studies considering different errors on the mesh force are conducted.Results show that the design parameters are significant factors for mesh force.The mesh force is reduced by 17%as the eccentricity of disk cam increases from 2.5 mm to 4 mm.When the radius of the movable roller increases from 7 mm to 20 mm,the mesh force decreases by 8%.As the radius of disk cam increases from 125 mm to 170 mm,the mesh force is decreased by 26.5%.For the impacts of errors,the mesh force has a noticeable fluctuation when these errors exist including the manufacturing error of disk cam,the installation error of disk cam and the manufacturing error of movable roller change.The prototype of the reducer is manufactured and preliminary run-in test proved the feasibility of the transmission principle.
基金supported by Citrus Disease Research and Extension(CDRE)(grant no.2016-70016-24828/project accusation no.1008984)from the USDA National Institute of Food and Agriculture
文摘Intensification of pollution loading worldwide has promoted an escalation of different types of disease-causing microorganisms, such as harmful algal blooms(HABs), instigating detrimental impacts on the quality of receiving surface waters. Formation of unwanted disinfection by-products(DBPs) resulting from conventional disinfection technologies reveals the need for the development of new sustainable alternatives. Quaternary Ammonium Compounds(QACs) are cationic surfactants widely known for their effective biocidal properties at the ppm level. In this study, a novel silica-based antimicrobial nanofilm was developed using a composite of silica-modified QAC(Fixed-Quat) and applied to a fiberglass mesh as an active surface via sol–gel technique. The synthesized Fixed-Quat nanocoating was found to be effective against E. coli with an inactivation rate of 1.3 × 10^(-3) log reduction/cm min. The Fixed-Quat coated fiberglass mesh also demonstrated successful control of Microcystis aeruginosa with more than 99% inactivation after 10 hr of exposure.The developed antimicrobial mesh was also evaluated with wild-type microalgal species collected in a water body experiencing HABs, obtaining a 97% removal efficiency. Overall,the silica-functionalized Fixed-Quat nanocoating showed promising antimicrobial properties for water disinfection and HABs control, while decreasing concerns related to DBPs formation and the possible release of toxic nanomaterials into the environment.
文摘In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are connected either directly or through some intermediate devices.These terminating and intermediate devices are considered as vertices of graph whereas wired or wireless connections among these devices are shown as edges of graph.Topological indices are used to reflect structural property of graphs in form of one real number.This structural invariant has revolutionized the field of chemistry to identify molecular descriptors of chemical compounds.These indices are extensively used for establishing relationships between the structure of nanotubes and their physico-chemical properties.In this paper a representation of sodium chloride(NaCl)is studied,because structure of NaCl is same as the Cartesian product of three paths of length exactly like a mesh network.In this way the general formula obtained in this paper can be used in chemistry as well as for any degree-based topological polynomials of three-dimensional mesh networks.
基金supported by Rotor Aerodynamics Key Laboratory[Grant No.RAL202102-4].
文摘The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which require careful analysis.In the present work,the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions.While a sliding mesh method is used to deal with the rotating coaxial rotors,the Reynolds-Averaged Navier-Stokes(RANS)equations are solved for the flow field.The Caradonna&Tung(CT)rotor and Harrington-2 coaxial rotor are considered to validate the numerical method.The results show that the aerodynamic interaction of the two rigid coaxial rotors significantly influences hover’s induced velocity and pressure distribution.In addition,the average thrust of an isolated coaxial rotor is smaller than that of the corresponding isolated single rotor.Compared with the isolated coaxial rotor,the existence of the fuselage results in an increment in the thrust of the rotors.Furthermore,these interactions between the components of the considered coaxial compound helicopter decay with an increase in the advance ratio.