期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Wavelet Transform-Based Bayesian Inference Learning with Conditional Variational Autoencoder for Mitigating Injection Attack in 6G Edge Network
1
作者 Binu Sudhakaran Pillai Raghavendra Kulkarni +1 位作者 Venkata Satya Suresh kumar Kondeti Surendran Rajendran 《Computer Modeling in Engineering & Sciences》 2025年第10期1141-1166,共26页
Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies... Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies,it can also create new cyber threats,such as vulnerabilities in trust and malicious node injection.Denialof-Service(DoS)attacks can stop many forms of operations by overwhelming networks and systems with data noise.Current anomaly detection methods require extensive software changes and only detect static threats.Data collection is important for being accurate,but it is often a slow,tedious,and sometimes inefficient process.This paper proposes a new wavelet transformassisted Bayesian deep learning based probabilistic(WT-BDLP)approach tomitigate malicious data injection attacks in 6G edge networks.The proposed approach combines outlier detection based on a Bayesian learning conditional variational autoencoder(Bay-LCVariAE)and traffic pattern analysis based on continuous wavelet transform(CWT).The Bay-LCVariAE framework allows for probabilistic modelling of generative features to facilitate capturing how features of interest change over time,spatially,and for recognition of anomalies.Similarly,CWT allows emphasizing the multi-resolution spectral analysis and permits temporally relevant frequency pattern recognition.Experimental testing showed that the flexibility of the Bayesian probabilistic framework offers a vast improvement in anomaly detection accuracy over existing methods,with a maximum accuracy of 98.21%recognizing anomalies. 展开更多
关键词 Bayesian inference learning automaton convolutional wavelet transform conditional variational autoencoder malicious data injection attack edge environment 6G communication
在线阅读 下载PDF
Localization of False Data Injection Attacks in Power Grid Based on Adaptive Neighborhood Selection and Spatio-Temporal Feature Fusion
2
作者 Zehui Qi Sixing Wu Jianbin Li 《Computers, Materials & Continua》 2025年第11期3739-3766,共28页
False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail... False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model. 展开更多
关键词 Power grid security adaptive neighborhood selection spatio-temporal correlation false data injection attacks localization
在线阅读 下载PDF
Analysis of cascading failures of power cyber-physical systems considering false data injection attacks 被引量:8
3
作者 Jian Li Chaowei Sun Qingyu Su 《Global Energy Interconnection》 CAS CSCD 2021年第2期204-213,共10页
This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control func... This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness. 展开更多
关键词 Power cyber-physical systems False date injection attack Cascading failure VULNERABILITY Power flow betweenness.
在线阅读 下载PDF
Passivity-Based Robust Control Against Quantified False Data Injection Attacks in Cyber-Physical Systems 被引量:4
4
作者 Yue Zhao Ze Chen +2 位作者 Chunjie Zhou Yu-Chu Tian Yuanqing Qin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第8期1440-1450,共11页
Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false d... Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals.For quantified false data injection attacks,this paper establishes an effective defense framework from the energy conversion perspective.Then,we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks.The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection.Moreover,with the disturbance attenuation technique,the burden of control system design is simplified because there is no need to design an attack observer.In addition,this secure control method is simple to implement because it avoids complicated mathematical operations.The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor. 展开更多
关键词 Cyber-physical systems energy controller energy conversion false data injection attacks L2 disturbance attenuation technology
在线阅读 下载PDF
Kinematic Control of Serial Manipulators Under False Data Injection Attack 被引量:2
5
作者 Yinyan Zhang Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1009-1019,共11页
With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits ... With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations. 展开更多
关键词 Cyber-physical systems false data injection attack MANIPULATORS remote kinematic control
在线阅读 下载PDF
A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments 被引量:1
6
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期631-654,共24页
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l... Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks. 展开更多
关键词 6G networks noise injection attacks Gaussian mixture model Bessel function traffic filter Volterra filter
在线阅读 下载PDF
Active resilient defense control against false data injection attacks in smart grids
7
作者 Xiaoyuan Luo Lingjie Hou +3 位作者 Xinyu Wang Ruiyang Gao Shuzheng Wang Xinping Guan 《Control Theory and Technology》 EI CSCD 2023年第4期515-529,共15页
The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defe... The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defense control scheme based on interval observer detection is proposed in this paper to protect smart grids.The proposed active defense highlights the integration of detection and defense against FDIAs in smart girds.First,a dynamic physical grid model under FDIAs is modeled,in which model uncertainty and parameter uncertainty are taken into account.Then,an interval observer-based detection method against FDIAs is proposed,where a detection criteria using interval residual is put forward.Corresponding to the detection results,the resilient defense controller is triggered to defense the FDIAs if the system states are affected by FDIAs.Linear matrix inequality(LMI)approach is applied to design the resilient controller with H_(∞)performance.The system with the resilient defense controller can be robust to FDIAs and the gain of the resilient controller has a certain gain margin.Our active resilient defense approach can be built in real time and show accurate and quick respond to the injected FDIAs.The effectiveness of the proposed defense scheme is verified by the simulation results on an IEEE 30-bus grid system. 展开更多
关键词 Active resilient defense attack detection Cyber attacks Cyber-attack detection Cyber grid elements Cyber threat False data injection attack Smart grids security Interval observer
原文传递
Security control of Markovian jump neural networks with stochastic sampling subject to false data injection attacks
8
作者 Lan Yao Xia Huang +1 位作者 Zhen Wang Min Xiao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第10期146-154,共9页
The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to rese... The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to research the exponential synchronization of MJNNs under false data injection attacks(FDIAs)since it can alleviate the impact of the FDIAs on the performance of the system by adjusting the sampling periods.A multi-delay error system model is established through the input-delay approach.To reduce the conservatism of the results,a sampling-periodprobability-dependent looped Lyapunov functional is constructed.In light of some less conservative integral inequalities,a synchronization criterion is derived,and an algorithm is provided that can be solved for determining the controller gain.Finally,a numerical simulation is presented to confirm the efficiency of the proposed method. 展开更多
关键词 Markovian jumping neural networks stochastic sampling looped-functional false data injection attack
原文传递
Coot Optimization with Deep Learning-Based False Data Injection Attack Recognition
9
作者 T.Satyanarayana Murthy P.Udayakumar +2 位作者 Fayadh Alenezi E.Laxmi Lydia Mohamad Khairi Ishak 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期255-271,共17页
The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation... The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation by IoT gadget developers.Cyber-attackers take advantage of such gadgets’vulnerabilities through various attacks such as injection and Distributed Denial of Service(DDoS)attacks.In this background,Intrusion Detection(ID)is the only way to identify the attacks and mitigate their damage.The recent advancements in Machine Learning(ML)and Deep Learning(DL)models are useful in effectively classifying cyber-attacks.The current research paper introduces a new Coot Optimization Algorithm with a Deep Learning-based False Data Injection Attack Recognition(COADL-FDIAR)model for the IoT environment.The presented COADL-FDIAR technique aims to identify false data injection attacks in the IoT environment.To accomplish this,the COADL-FDIAR model initially preprocesses the input data and selects the features with the help of the Chi-square test.To detect and classify false data injection attacks,the Stacked Long Short-Term Memory(SLSTM)model is exploited in this study.Finally,the COA algorithm effectively adjusts the SLTSM model’s hyperparameters effectively and accomplishes a superior recognition efficiency.The proposed COADL-FDIAR model was experimentally validated using a standard dataset,and the outcomes were scrutinized under distinct aspects.The comparative analysis results assured the superior performance of the proposed COADL-FDIAR model over other recent approaches with a maximum accuracy of 98.84%. 展开更多
关键词 False data injection attack security internet of things deep learning coot optimization algorithm
在线阅读 下载PDF
Residual-Based False Data Injection Attacks Against Multi-Sensor Estimation Systems 被引量:5
10
作者 Haibin Guo Jian Sun Zhong-Hua Pang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1181-1191,共11页
This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the meas... This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the measurement residuals of partial sensors due to limited attack resources,is proposed to maximally degrade system estimation performance.The attack stealthiness condition is given,and then the estimation error covariance in compromised state is derived to quantify the system performance under attack.The optimal attack strategy is obtained by solving several convex optimization problems which maximize the trace of the compromised estimation error covariance subject to the stealthiness condition.Moreover,due to the constraint of attack resources,the selection principle of the attacked sensor is provided to determine which sensor is attacked so as to hold the most impact on system performance.Finally,simulation results are presented to verify the theoretical analysis. 展开更多
关键词 Cyber-physical systems(CPSs) false data injection(FDI)attacks remote state estimation stealthy attacks
在线阅读 下载PDF
Optimal Secure Control of Networked Control Systems Under False Data Injection Attacks:A Multi-Stage Attack-Defense Game Approach
11
作者 Dajun Du Yi Zhang +1 位作者 Baoyue Xu Minrui Fei 《IEEE/CAA Journal of Automatica Sinica》 2025年第4期821-823,共3页
Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by de... Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by designing defense strategy on the basis of identifying attack strategy,maintaining stable operation of NCSs.To solve this attack-defense game problem,this letter investigates optimal secure control of NCSs under FDIAs.First,for the alterations of energy caused by false data,a novel attack-defense game model is constructed,which considers the changes of energy caused by the actions of the defender and attacker in the forward and feedback channels. 展开更多
关键词 designing defense strategy networked control systems ncss alterations energy networked control systems false data injection attacks fdias strategywhile false data injection attacks optimal secure control identifying attack strategymaintaining
在线阅读 下载PDF
Multi-Spacecraft Formation Control Under False Data Injection Attack:A Cross Layer Fuzzy Game Approach
12
作者 Yifan Zhong Yuan Yuan +2 位作者 Huanhuan Yuan Mengbi Wang Huaping Liu 《IEEE/CAA Journal of Automatica Sinica》 2025年第4期776-788,共13页
In this paper,we address a cross-layer resilient control issue for a kind of multi-spacecraft system(MSS)under attack.Attackers with bad intentions use the false data injection(FDI)attack to prevent the MSS from reach... In this paper,we address a cross-layer resilient control issue for a kind of multi-spacecraft system(MSS)under attack.Attackers with bad intentions use the false data injection(FDI)attack to prevent the MSS from reaching the goal of consensus.In order to ensure the effectiveness of the control,the embedded defender in MSS preliminarily allocates the defense resources among spacecrafts.Then,the attacker selects its target spacecrafts to mount FDI attack to achieve the maximum damage.In physical layer,a Nash equilibrium(NE)control strategy is proposed for MSS to quantify system performance under the effect of attacks by solving a game problem.In cyber layer,a fuzzy Stackelberg game framework is used to examine the rivalry process between the attacker and defender.The strategies of both attacker and defender are given based on the analysis of physical layer and cyber layer.Finally,a simulation example is used to test the viability of the proposed cross layer fuzzy game algorithm. 展开更多
关键词 False data injection(FDI)attack fuzzy Stackelberg game multi-spacecraft system(MSS)
在线阅读 下载PDF
False data injection attacks data recovery in smart grids:A graph characteristics-based model
13
作者 Xinyu Wang Man Hu +1 位作者 Xiaoyuan Luo Xinping Guan 《Smart Power & Energy Security》 2025年第2期86-96,共11页
False data injection(FDI)attacks pose a critical threat to power system security by crafting sophisticated attack vectors that evade conventional bad data detection methods.These malicious manipulations corrupt state ... False data injection(FDI)attacks pose a critical threat to power system security by crafting sophisticated attack vectors that evade conventional bad data detection methods.These malicious manipulations corrupt state estimation results,potentially leading to severe operational failures in control centers.To combat this challenge,we present an innovative Generative Adversarial Network framework with Spatial Feature-based Temporal Convolutional Network as the discriminator and Random Forest-Graph Convolutional Generator hybrid model as the generator.The proposed approach leverages a Random Forest-enhanced Graph Convolutional Generator to reconstruct attack-free measurements while employing a Spatial-Temporal Feature-based Discriminator to improve detection accuracy.Through adversarial training,these components synergistically improve both attack detection sensitivity and data reconstruction accuracy.Comprehensive numerical simulations on IEEE 14-bus and 118-bus test systems validate the model's superior performance,demonstrating significant improvements in both detection robustness and operational resilience against FDI attacks. 展开更多
关键词 False data injection attacks attack detection Data recovery Neural networks
在线阅读 下载PDF
Detection of false data injection attacks on power systems using graph edge-conditioned convolutional networks 被引量:12
14
作者 Bairen Chen Q.H.Wu +1 位作者 Mengshi Li Kaishun Xiahou 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第2期1-12,共12页
State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure... State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN. 展开更多
关键词 Power system state estimation(PSSE) Bad data detection(BDD) False data injection attacks(FDIA) Graph edge-conditioned convolutional networks(GECCN)
在线阅读 下载PDF
Analysis of Stealthy False Data Injection Attacks Against Networked Control Systems:Three Case Studies 被引量:6
15
作者 PANG Zhonghua FU Yuan +1 位作者 GUO Haibin SUN Jian 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第4期1407-1422,共16页
This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness an... This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness and effects on system performance are analyzed under three cases of system knowledge held by an attacker and a defender.Firstly,it is derived that the proposed attack scheme is stealthy for a residual-based detector when the attacker and the defender hold the same accurate system knowledge.Secondly,it is proven that the proposed attack scheme is still stealthy even if the defender actively modifies the Kalman filter gain so as to make it different from that of the attacker.Thirdly,the stealthiness condition of the proposed attack scheme based on an inaccurate model is given.Furthermore,for each case,the instability conditions of the closed-loop system under attack are derived.Finally,simulation results are provided to test the proposed attack scheme. 展开更多
关键词 False data injection attack networked control systems(NCSs) stability stealthiness
原文传递
False data injection attacks against smart grid state estimation:Construction, detection and defense 被引量:6
16
作者 ZHANG Meng SHEN Chao +4 位作者 HE Ning HAN SiCong LI Qi WANG Qian GUAN XiaoHong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第12期2077-2087,共11页
As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electri... As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electrical components and computinginformation in cyber space,smart grid is vulnerable to malicious attacks,especially for a type of attacks named false data injection attacks(FDIAs).FDIAs are capable of tampering meter measurements and affecting the results of state estimation stealthily,which severely threat the security of smart grid.Due to the significantinfluence of FDIAs on smart grid,the research related to FDIAs has received considerable attention over the past decade.This paper aims to summarize recent advances in FDIAs against smart grid state estimation,especially from the aspects of background materials,construction methods,detection and defense strategies.Moreover,future research directions are discussed and outlined by analyzing existing results.It is expected that through the review of FDIAs,the vulnerabilities of smart grid to malicious attacks can be further revealed and more attention can be devoted to the detection and defense of cyber-physical attacks against smart grid. 展开更多
关键词 false data injection attacks(FDIAs) state estimation smart grid cyber security
原文传递
Defense of Massive False Data Injection Attack via Sparse Attack Points Considering Uncertain Topological Changes 被引量:5
17
作者 Xiaoge Huang Zhijun Qin +2 位作者 Ming Xie Hui Liu Liang Meng 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第6期1588-1598,共11页
False data injection attack(FDIA)is a typical cyber-attack aiming at falsifying measurement data for state estimation(SE),which may incur catastrophic consequences on cyber-physical system operation.In this paper,we d... False data injection attack(FDIA)is a typical cyber-attack aiming at falsifying measurement data for state estimation(SE),which may incur catastrophic consequences on cyber-physical system operation.In this paper,we develop a deep learning based methodology for detection,localization,and data recovery of FDIA on power systems in a coherent and holistic manner.However,the multi-modal probability distributions of both measurements and state variables in SE due to ever-changing operating points and structural/topological changes pose great challenges in detecting and localizing FDIA.To address this challenge,we first propose an enhanced attack model to launch massive FDIA on limited access points.Second,we train an auto-encoder(AE)with a Bayesian change verification(BCV)classifier using N-1 contingencies to detect FDIA with unseen N-k operational topologies.Third,to avoid model collapse caused by multi-modal measurement distribution,an AE-based generative adversarial network(GAN)is derived to generate a diverse candidate set of normal measurement vectors with various operational topologies.Finally,we develop a pattern match algorithm to localize and recover the falsified measurements and state variables by comparing the falsified measurement vectors with the normal measurement vectors in the candidate set.Case studies with IEEE benchmark systems and a modified 415-bus China Southern Grid system are provided to validate the proposed methodology.It shows that the proposed methodology achieves an average 95%accuracy for detection,over 80%accuracy for localization of FDIA,and recovers the measurement and state variables close to their true values. 展开更多
关键词 False data injection attack auto-encoder generative adversarial network state estimation cyber security
原文传递
A Hybrid Method for False Data Injection Attack Detection in Smart Grid Based on Variational Mode Decomposition and OS-ELM 被引量:5
18
作者 Chunxia Dou Di Wu +2 位作者 Dong Yue Bao Jin Shiyun Xu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第6期1697-1707,共11页
Accurate state estimation is critical to wide-area situational awareness of smart grid.However,recent research found that power system state estimators are vulnerable to a new type of cyber-attack,called false data in... Accurate state estimation is critical to wide-area situational awareness of smart grid.However,recent research found that power system state estimators are vulnerable to a new type of cyber-attack,called false data injection attack(FDIA).In order to ensure the security of power system operation and control,a hybrid FDIA detection mechanism utilizing temporal correlation is proposed.The proposed mechanism combines Variational Mode Decomposition(VMD)technology and machine learning.For the purpose of identifying the features of FDIA,VMD is used to decompose the system state time series into an ensemble of components with different frequencies.Furthermore,due to the lack of online model updating ability in a traditional extreme learning machine,an OS-extreme learning machine(OSELM)which has sequential learning ability is used as a detector for identifying FDIA.The proposed detection mechanism is evaluated on the IEEE-14 bus system using real load data from an independent system operator in New York.Apart from detection accuracy,the impact of attack intensity and environment noise on the performance of the proposed method are tested.The simulation results demonstrate the efficiency and robustness of our method. 展开更多
关键词 Cyberphysical security false data injection attack detection smart grid state estimation
原文传递
Impact analysis of false data injection attacks on power system static security assessment 被引量:5
19
作者 Jiongcong CHEN Gaoqi LIANG +4 位作者 Zexiang CAI Chunchao HU Yan XU Fengji LUO Junhua ZHAO 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2016年第3期496-505,共10页
Static security assessment(SSA) is an important procedure to ensure the static security of the power system.Researches recently show that cyber-attacks might be a critical hazard to the secure and economic operations ... Static security assessment(SSA) is an important procedure to ensure the static security of the power system.Researches recently show that cyber-attacks might be a critical hazard to the secure and economic operations of the power system. In this paper, the influences of false data injection attack(FDIA) on the power system SSA are studied. FDIA is a major kind of cyber-attacks that can inject malicious data into meters, cause false state estimation results, and evade being detected by bad data detection. It is firstly shown that the SSA results could be manipulated by launching a successful FDIA, which can lead to incorrect or unnecessary corrective actions. Then,two kinds of targeted scenarios are proposed, i.e., fake secure signal attack and fake insecure signal attack. The former attack will deceive the system operator to believe that the system operates in a secure condition when it is actually not. The latter attack will deceive the system operator to make corrective actions, such as generator rescheduling, load shedding, etc. when it is unnecessary and costly. The implementation of the proposed analysis is validated with the IEEE-39 benchmark system. 展开更多
关键词 Cyber physical power system Static security assessment False data injection attacks State estimation
原文传递
Detection and Estimation of False Data Injection Attacks for Load Frequency Control Systems 被引量:3
20
作者 Jun Ye Xiang Yu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第4期861-870,共10页
False data injection attacks(FDIAs)against the load frequency control(LFC)system can lead to unstable operation of power systems.In this paper,the problems of detecting and estimating the FDIAs for the LFC system in t... False data injection attacks(FDIAs)against the load frequency control(LFC)system can lead to unstable operation of power systems.In this paper,the problems of detecting and estimating the FDIAs for the LFC system in the presence of external disturbances are investigated.First,the LFC system model with FDIAs against frequency and tie-line power measurements is established.Then,a design procedure for the unknown input observer(UIO)is presented and the residual signal is generated to detect the FDIAs.The UIO is designed to decouple the effect of the unknown external disturbance on the residual signal.After that,an attack estimation method based on a robust adaptive observer(RAO)is proposed to estimate the state and the FDIAs simultaneously.In order to improve the performance of attack estimation,the H¥technique is employed to minimize the effect of external disturbance on estimation errors,and the uniform boundedness of the state and attack estimation errors is proven using Lyapunov stability theory.Finally,a two-area interconnected power system is simulated to demonstrate the effectiveness of the proposed attack detection and estimation algorithms. 展开更多
关键词 External disturbance false data injection attacks load frequency control robust adaptive observer unknown input observer
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部