The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often...The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.展开更多
The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by phy...The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by physical attacks,EMP(electromagnetic pulse)events,or cyberattacks,such disruptions could cripple essential services like water supply,healthcare,communication,and transportation.Research indicates that an attack on just nine key substations could result in a coast-to-coast blackout lasting up to 18 months,leading to economic collapse,civil unrest,and a breakdown of public order.This paper explores the key vulnerabilities of the grid,the potential impacts of prolonged blackouts,and the role of AI(artificial intelligence)and ML(machine learning)in mitigating these threats.AI-driven cybersecurity measures,predictive maintenance,automated threat response,and EMP resilience strategies are discussed as essential solutions to bolster grid security.Policy recommendations emphasize the need for hardened infrastructure,enhanced cybersecurity,redundant power systems,and AI-based grid management to ensure national resilience.Without proactive measures,the nation remains exposed to a catastrophic power grid failure that could have dire consequences for society and the economy.展开更多
Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review cover...Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review covers in-situ testing,intelligent monitoring,and geophysical testing methods,highlighting fundamental principles,testing apparatuses,data processing techniques,and engineering applications.The state-of-the-art summary emphasizes not only cutting-edge innovations for complex and harsh environments but also the transformative role of artificial intelligence and machine learning in data interpretations.The integration of big data and advanced algorithms is particularly impactful,enabling the identification,prediction,and mitigation of potential risks in underground projects.Key aspects of the discussion include detection capabilities,method integration,and data convergence of intelligent technologies to drive enhanced safety,operational efficiency,and predictive reliability.The review also examines future trends in intelligent technologies,emphasizing unified platforms that combine multiple methods,real-time data,and predictive analytics.These advancements are shaping the evolution of underground construction and maintenance,aiming for risk-free,high-efficiency underground engineering.展开更多
In this work,we present a parallel implementation of radiation hydrodynamics coupled with particle transport,utilizing software infrastructure JASMIN(J Adaptive Structured Meshes applications INfrastructure)which enca...In this work,we present a parallel implementation of radiation hydrodynamics coupled with particle transport,utilizing software infrastructure JASMIN(J Adaptive Structured Meshes applications INfrastructure)which encapsulates high-performance technology for the numerical simulation of complex applications.Two serial codes,radiation hydrodynamics RH2D and particle transport Sn2D,have been integrated into RHSn2D on JASMIN infrastructure,which can efficiently use thousands of processors to simulate the complex multi-physics phenomena.Moreover,the non-conforming processors strategy has ensured RHSn2D against the serious load imbalance between radiation hydrodynamics and particle transport for large scale parallel simulations.Numerical results show that RHSn2D achieves a parallel efficiency of 17.1%using 90720 cells on 8192 processors compared with 256 processors in the same problem.展开更多
Structural health monitoring technology uses advanced sensors to collect structural state data in real time,evaluate its integrity and residual life,and make maintenance decisions accordingly.The key of structural hea...Structural health monitoring technology uses advanced sensors to collect structural state data in real time,evaluate its integrity and residual life,and make maintenance decisions accordingly.The key of structural health monitoring is to obtain structural data accurately.With the development of new sensor technology,sensors and data acquisition devices for structural health monitoring are constantly emerging,and the performance of these devices is developing rapidly.The latest developments of fiber optic sensors,piezoelectric material sensors and self-diagnostic sensors for structural health monitoring are summarized.The basic working principle of each sensor and its application in structural health monitoring are introduced,and the challenges and opportunities faced by sensors in structural health monitoring are prospected.展开更多
Quantifying material use in infrastructure development and analyzing its relationship with economic growth is essential for enhancing resource efficiency and steering regional resource management toward sustainable de...Quantifying material use in infrastructure development and analyzing its relationship with economic growth is essential for enhancing resource efficiency and steering regional resource management toward sustainable development.This study systematically assessed infrastructure related material use in 30 provinces,autonomous regions,and municipalities in China during 1978-2022.The result indicated that material stock has experienced significant growth,increasing from 16.91×10^(9)t in 1978 to 103.60×10^(9)t in 2022,with an average annual growth rate of 4.20%.However,from 1978 to 2015,material input followed a strong upward trend but saturated after 2015.At the national level,material input peaked in 2015,after which it began to decline.The central region reached its peak earlier in 2013,while the eastern and western regions peaked in 2015.Using a decoupling analysis framework,this study revealed that nationally,the elasticity value between material stock and gross domestic product(GDP)remained near or above 1.0,reflecting continued reliance on stock accumulation.Regionally,the elasticity value between material stock and GDP has increased in the central and western regions during 1978-2022,whereas elasticity value between material stock and GDP in the eastern region showed a slower growth rate but still struggled to achieve absolute decoupling.Moreover,the elasticity value between material input and GDP has declined at the national level,presenting a relative decoupling,with some regions already achieving absolute decoupling.The eastern region was closer to absolute decoupling,while the central and western regions,though still intensive in material input,exhibited faster declines in elasticity.Accelerating the transition from linear to circular economy is an essential step for China to achieve absolute decoupling and long-term sustainability.Finally,this research recommends promoting the adoption of renewable energy,driving industrial upgrading,implementing compact urban design,and extending the lifespan of infrastructure to reduce material dependency and achieve sustainable infrastructure transformation at the national level.展开更多
On 13 December 2024,liquefied natural gas(LNG)company Venture Global LNG(Arlington,VA,USA)commenced commercial production of the super-chilled fuel at its partially completed Plaquemines LNG export terminal in Louisia...On 13 December 2024,liquefied natural gas(LNG)company Venture Global LNG(Arlington,VA,USA)commenced commercial production of the super-chilled fuel at its partially completed Plaquemines LNG export terminal in Louisiana(Fig.1)[1].In terms of dollars invested,the 21 billion USD plant is the fourth largest infrastructure project in the world[2].Venture Global initially expected the terminal to produce and ship 20 million tonnes of LNG annually[3].An 18 billion USD expansion of the terminal approved in February 2025 will bring its maximum annual produc-tion capacity to 45 million tonnes[4].When fully operational in 2027,the facility,located in Plaquemines Parish on the Mississippi River about 32 km south of New Orleans,will be among the largest in the world,further contributing to the US position as the world’s biggest LNG exporter[1].展开更多
Since its inception,the Belt and Road Initiative(BRI)has emerged as a global platform for international cooperation,with infrastructure connectivity at its core.Infrastructure,often referred to as the“lifeblood”of e...Since its inception,the Belt and Road Initiative(BRI)has emerged as a global platform for international cooperation,with infrastructure connectivity at its core.Infrastructure,often referred to as the“lifeblood”of economic and social development,plays a pivotal role in breaking bottlenecks,bridging regional gaps,and driving inclusive growth-particularly in developing regions where inadequate infrastructure has long hindered progress.展开更多
The NIST Cybersecurity Framework (NIST CSF) serves as a voluntary guideline aimed at helping organizations, tiny and medium-sized enterprises (SMEs), and critical infrastructure operators, effectively manage cyber ris...The NIST Cybersecurity Framework (NIST CSF) serves as a voluntary guideline aimed at helping organizations, tiny and medium-sized enterprises (SMEs), and critical infrastructure operators, effectively manage cyber risks. Although comprehensive, the complexity of the NIST CSF can be overwhelming, especially for those lacking extensive cybersecurity resources. Current implementation tools often cater to larger companies, neglecting the specific needs of SMEs, which can be vulnerable to cyber threats. To address this gap, our research proposes a user-friendly, open-source web platform designed to simplify the implementation of the NIST CSF. This platform enables organizations to assess their risk exposure and continuously monitor their cybersecurity maturity through tailored recommendations based on their unique profiles. Our methodology includes a literature review of existing tools and standards, followed by a description of the platform’s design and architecture. Initial tests with SMEs in Burkina Faso reveal a concerning cybersecurity maturity level, indicating the urgent need for improved strategies based on our findings. By offering an intuitive interface and cross-platform accessibility, this solution aims to empower organizations to enhance their cybersecurity resilience in an evolving threat landscape. The article concludes with discussions on the practical implications and future enhancements of the tool.展开更多
Purpose–This paper aims to systematically review the evolution of inspection technologies and equipment for heavy-haul railway infrastructure,with a focus on China’s Shuohuang Railway and Daqin Railway.It summarizes...Purpose–This paper aims to systematically review the evolution of inspection technologies and equipment for heavy-haul railway infrastructure,with a focus on China’s Shuohuang Railway and Daqin Railway.It summarizes the technological progression from traditional manual inspections to integrated and intelligent inspection systems,analyzes their practical application outcomes and outlines future research directions to support the safe,efficient and sustainable operation of heavy-haul railways.Design/methodology/approach–The study employs a combination of historical and empirical analysis,primarily drawing on academic literature and operational data from Shuohuang Railway.The development of inspection technologies is categorized into two distinct phases:traditional inspection and integrated inspection.The comprehensive effectiveness of these technologies is evaluated based on actual inspection efficiency,defect detection capability,cost savings and other relevant data.Findings–The adoption of integrated inspection vehicles has significantly improved inspection efficiency and accuracy.In 2014,the world’s first heavy-haul integrated inspection vehicle enabled synchronous multidisciplinary inspections,greatly reducing reliance on manual labor.By 2024,the intelligent heavy-haul integrated inspection vehicle further enhanced detection precision by 30%.Practical applications demonstrate that the annual number of track defects decreased from 25,000 to 3,800,while the track quality index(TQI)remained stable below 6 mm.Additionally,annual maintenance costs were reduced by more than 40 m yuan.Originality/value–This paper provides the first systematic review of the development of inspection technologies for heavy-haul railway infrastructure,highlighting China’s leading achievements in integrated and intelligent inspection.It clarifies the practical value of these technologies in enhancing safety,reducing costs and optimizing maintenance operations.Furthermore,it proposes future directions for development,including system integration,onboard computing capabilities and unmanned operations,offering valuable insights for technological innovation and policymaking in the field.展开更多
With the continuous advancement of the country’s urbanization process,many cities are simultaneously carrying out the renovation of old urban areas while building new urban areas,which involves the demolition of many...With the continuous advancement of the country’s urbanization process,many cities are simultaneously carrying out the renovation of old urban areas while building new urban areas,which involves the demolition of many buildings and municipal infrastructures.To ensure the smooth progress of demolition projects,related safety management work is crucial.This article will discuss the safety management measures for demolition projects based on the basic principles of safety management for municipal infrastructure demolition projects,taking the demolition of gas storage tanks as an example.展开更多
The accelerated global adoption of electric vehicles(EVs)is driving significant expansion and increasing complexity within the EV charging infrastructure,consequently presenting novel and pressing cybersecurity challe...The accelerated global adoption of electric vehicles(EVs)is driving significant expansion and increasing complexity within the EV charging infrastructure,consequently presenting novel and pressing cybersecurity challenges.While considerable effort has focused on preventative cybersecurity measures,a critical deficiency persists in structured methodologies for digital forensic analysis following security incidents,a gap exacerbated by system heterogeneity,distributed digital evidence,and inconsistent logging practices which hinder effective incident reconstruction and attribution.This paper addresses this critical need by proposing a novel,data-driven forensic framework tailored to the EV charging infrastructure,focusing on the systematic identification,classification,and correlation of diverse digital evidence across its physical,network,and application layers.Our methodology integrates open-source intelligence(OSINT)with advanced system modeling based on a three-layer cyber-physical system architecture to comprehensively map potential evidentiary sources.Key contributions include a comprehensive taxonomy of cybersecurity threats pertinent to EV charging ecosystems,detailed mappings between these threats and the resultant digital evidence to guide targeted investigations,the formulation of adaptable forensic investigation workflows for various incident scenarios,and a critical analysis of significant gaps in digital evidence availability within current EV charging systems,highlighting limitations in forensic readiness.The practical application and utility of this method are demonstrated through illustrative case studies involving both empirically-derived and virtual incident scenarios.The proposed datadriven approach is designed to significantly enhance digital forensic capabilities,support more effective incident response,strengthen compliance with emerging cybersecurity regulations,and ultimately contribute to bolstering the overall security,resilience,and trustworthiness of this increasingly vital critical infrastructure.展开更多
The increasing incidence of global warming and frequent heavy precipitation events presents a significant challenge for urban areas in managing extreme precipitation.Strengthening the resilience of communities to clim...The increasing incidence of global warming and frequent heavy precipitation events presents a significant challenge for urban areas in managing extreme precipitation.Strengthening the resilience of communities to climate change is a crucial strategy for fostering sustainable urban development.Green infrastructure offers an ecologically system for rainwater management and ecological restoration,and plays a significant role in adapting to climate risks.This study focuses on climate resilience by examining the implementation of green rainwater infrastructure within the context of climate-adapted green infrastructure in the High Point community of Seattle,USA,and proposes renewal planning strategies,methods,and implementation concepts at the community level.The research indicates that the High Point community has effectively mitigated the issue of waterlogging and enhanced the local microclimate through the implementation of green infrastructure systems,including permeable pavement,rain gardens,bioretention pools,and vegetative buffer zones.It is proposed that the collaborative design of green infrastructure should adhere to principles of systematization,alignment with natural processes,adaptation to the local environment,and engagement of multiple stakeholders,while considering various functions,diverse communities,and differing social contexts.Furthermore,it should be developed in consideration of the unique spatial characteristics,landscape structures,and social needs of each community.展开更多
This paper focuses on the optimization of the evaluation index system for the value of transportation infrastructure assets.It analyzes the shortcomings of the current system and explores the directions for optimizing...This paper focuses on the optimization of the evaluation index system for the value of transportation infrastructure assets.It analyzes the shortcomings of the current system and explores the directions for optimizing the index system from the perspectives of functionality,economy,social impact,environmental impact,and sustainability.The paper also discusses the application of the optimized index system in practical evaluation and the measures to ensure its effectiveness.The research aims to enhance the evaluation mechanism for the value of transportation infrastructure assets,providing a more scientific basis for decision-making,addressing challenges in asset management,improving the level of asset management in transportation infrastructure,and meeting the demands of high-quality development in the transportation sector in the new era.展开更多
Artificial intelligence(Al)has emerged as a key arena in major country competition.Recognizing the potential of artificial intelligence as a strategic asset to redefine the United States'global technological leade...Artificial intelligence(Al)has emerged as a key arena in major country competition.Recognizing the potential of artificial intelligence as a strategic asset to redefine the United States'global technological leadership and geopolitical influence,the Trump administration announced the Stargate project in January 2025.Trump's Al infrastructure policy is characterized by government-led connections to technology capital,loose technological regulation,security priorities,and the pursuit of political achievements.His policy goals are to achieve economic growth and job creation internally to serve the political goal of American revival,win the global AI competition,and ensure US global technological leadership.However,the policy implementation of AI infrastructure faces a few challenges,such as industrial path dependency,energy supply constraints,and ethical risks of Al.Guided by techno-nationalism,the US would continue to regard China as its primary strategic competitor.展开更多
This paper provides an overview of the recent advancements in magnetic structured triboelectric nanogenerators(MSTENGs)and their potential for energy harvesting and sensing in coastal bridge infrastructure.This paper ...This paper provides an overview of the recent advancements in magnetic structured triboelectric nanogenerators(MSTENGs)and their potential for energy harvesting and sensing in coastal bridge infrastructure.This paper begins with a brief discussion on the fundamental physics modes of triboelectric nanogenerators(TENGs),triboelectric series,and factors affecting TENG power generation and transmission,providing a foundation for the subsequent sections.The review focuses on the different types of MSTENGs and their applications in coastal infrastructure.Specifically,it covers magnetic spherical TENG networks,magnet-assisted TENGs,MSTENGs for bridges,and magnetic multilayer structures based on TENGs.The advantages and limitations of each type of MSTENG are discussed in detail,highlighting their respective suitability for different coastal bridge infrastructure applications.In addition,the paper addresses the challenges and provides insights into the future of MSTENGs.These include the need for improved durability and sustainability of MSTENGs in harsh coastal environments,increasing their power-output levels to fulfll high energy needs,and the requirement for collaborative efforts between academia,industry,and government institutions to optimize MSTENG performance.展开更多
Digital infrastructure possesses dual attributes as both an international public good and a strategic communication tool for major countries. In recent years, the US has been active in the field of global digital infr...Digital infrastructure possesses dual attributes as both an international public good and a strategic communication tool for major countries. In recent years, the US has been active in the field of global digital infrastructure, showing a trend of deep coupling and mutual embedding with strategic communication. The US has built a strategic communication system for digital infrastructure. This system is designed to set the international agenda, collect information and intelligence, and deter its competitors. The system presents a three-way coherent infrastructure of a basic layer, application layer,and value layer. The mode of operation is characterized by commercial force collaboration, alliance system linkage, and global multi-domain network layout. However, to maintain its unipolar digital hegemony,the United States has over-instrumentalized its digital infrastructure and exploited and amplified the asymmetry of digital science and technology for a long period of time, which not only highlights its unilateral stance and exclusionary nature but also results in a global digital divide and trust deficit, which will pose constraints on its sustainability in the long term.展开更多
Civil infrastructure is continuously subject to aging and deterioration due to multiple factors,which lead to a decline in performance and impact structural health.Accumulated damage on structures increases operationa...Civil infrastructure is continuously subject to aging and deterioration due to multiple factors,which lead to a decline in performance and impact structural health.Accumulated damage on structures increases operational costs and poses significant risks to public safety.Effective maintenance,repair,and rehabilitation strategies are needed to ensure civil infrastructure’s overall safety and reliability.Non-Destructive Evaluation(NDE)methods are utilized to assess latent damage and provide decision-makers with real-time information for mitigating hazards.Within the last decade,there has been a significant increase in the research and development of innovative NDE techniques to improve data processing and promote efficient and accurate infrastructure assessment.This paper aims to review one of those methods,namely,Infrared Thermography(IRT),and its applications in civil infrastructure.A comprehensive review is presented by investigating numerous journal articles,research papers,and technical reports describing numerous IRT applications for bridges,buildings,and general civil structures made from different materials.The capability of IRT to identify and pinpoint anomalies,typically in the early stages of degradation,has excellent potential to improve the safety and shore up the dependability of civil infrastructures while reducing expenses tied to maintenance and rehabilitation.Furthermore,the non-invasive nature of IRT is beneficial in mitigating disturbances and downtime that may occur during various inspection procedures.It is highlighted that IRT is a highly versatile and effective tool for infrastructure condition assessment.With further advancement and fine-tuning of the available techniques,it is likely that IRT will continue to gain significant popularity in maintaining and monitoring civil infrastructure.展开更多
Urban ecological infrastructure is the ecological background of urban sustainable development and is the basic guarantee for the construction of ecological cities. According to the characteristics of the ecological in...Urban ecological infrastructure is the ecological background of urban sustainable development and is the basic guarantee for the construction of ecological cities. According to the characteristics of the ecological infrastructure of coal-based cities, the ecological infrastructure is divided into two subsystems:natural infrastructure subsystem and artificial infrastructure subsystem. According to each subsystem and its main components(such as atmosphere, green space, hydrology, traffic and transportation), 36 indicators were selected to establish the evaluation system. In addition, the evaluation model was established by means of mean square deviation method and composite index method, and a dynamic analysis was carried out on the ecological infrastructure quality of Huainan City in 2006-2015. The results show that the composite index of ecological infrastructure in Huainan City in 2006-2015 remained at the medium level, and the natural infrastructure at the worse and poor levels, while the artificial infrastructure remained at the medium and excellent levels.展开更多
This paper classifies total fixed capital into three categories,namely,economic infrastructure capital,social infrastructure capital and non-infrastructure capital,and then offers complete and detailed estimates of th...This paper classifies total fixed capital into three categories,namely,economic infrastructure capital,social infrastructure capital and non-infrastructure capital,and then offers complete and detailed estimates of the national time series data(1981-2012) and the provincial panel data of 31 administrative regions(1997-2012).On this basis,this paper estimates the output elasticities of the three categories of capital and then tests whether or not the production function of China shows constant returns to scale.展开更多
基金The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025)。
文摘The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.
文摘The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by physical attacks,EMP(electromagnetic pulse)events,or cyberattacks,such disruptions could cripple essential services like water supply,healthcare,communication,and transportation.Research indicates that an attack on just nine key substations could result in a coast-to-coast blackout lasting up to 18 months,leading to economic collapse,civil unrest,and a breakdown of public order.This paper explores the key vulnerabilities of the grid,the potential impacts of prolonged blackouts,and the role of AI(artificial intelligence)and ML(machine learning)in mitigating these threats.AI-driven cybersecurity measures,predictive maintenance,automated threat response,and EMP resilience strategies are discussed as essential solutions to bolster grid security.Policy recommendations emphasize the need for hardened infrastructure,enhanced cybersecurity,redundant power systems,and AI-based grid management to ensure national resilience.Without proactive measures,the nation remains exposed to a catastrophic power grid failure that could have dire consequences for society and the economy.
基金supported by Ministry of Education of Singapore,under Academic Research Fund Tier 1(Grant Number RG143/23).
文摘Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review covers in-situ testing,intelligent monitoring,and geophysical testing methods,highlighting fundamental principles,testing apparatuses,data processing techniques,and engineering applications.The state-of-the-art summary emphasizes not only cutting-edge innovations for complex and harsh environments but also the transformative role of artificial intelligence and machine learning in data interpretations.The integration of big data and advanced algorithms is particularly impactful,enabling the identification,prediction,and mitigation of potential risks in underground projects.Key aspects of the discussion include detection capabilities,method integration,and data convergence of intelligent technologies to drive enhanced safety,operational efficiency,and predictive reliability.The review also examines future trends in intelligent technologies,emphasizing unified platforms that combine multiple methods,real-time data,and predictive analytics.These advancements are shaping the evolution of underground construction and maintenance,aiming for risk-free,high-efficiency underground engineering.
基金National Natural Science Foundation of China(12471367)。
文摘In this work,we present a parallel implementation of radiation hydrodynamics coupled with particle transport,utilizing software infrastructure JASMIN(J Adaptive Structured Meshes applications INfrastructure)which encapsulates high-performance technology for the numerical simulation of complex applications.Two serial codes,radiation hydrodynamics RH2D and particle transport Sn2D,have been integrated into RHSn2D on JASMIN infrastructure,which can efficiently use thousands of processors to simulate the complex multi-physics phenomena.Moreover,the non-conforming processors strategy has ensured RHSn2D against the serious load imbalance between radiation hydrodynamics and particle transport for large scale parallel simulations.Numerical results show that RHSn2D achieves a parallel efficiency of 17.1%using 90720 cells on 8192 processors compared with 256 processors in the same problem.
文摘Structural health monitoring technology uses advanced sensors to collect structural state data in real time,evaluate its integrity and residual life,and make maintenance decisions accordingly.The key of structural health monitoring is to obtain structural data accurately.With the development of new sensor technology,sensors and data acquisition devices for structural health monitoring are constantly emerging,and the performance of these devices is developing rapidly.The latest developments of fiber optic sensors,piezoelectric material sensors and self-diagnostic sensors for structural health monitoring are summarized.The basic working principle of each sensor and its application in structural health monitoring are introduced,and the challenges and opportunities faced by sensors in structural health monitoring are prospected.
基金supported by the Shanghai Committee of Science and Technology Fund(22ZR1419300)the Academic Year 2025 Ritsumeikan Asia Pacific University Academic Research Subsidy(Grants-in-Aid Reapplication Type).
文摘Quantifying material use in infrastructure development and analyzing its relationship with economic growth is essential for enhancing resource efficiency and steering regional resource management toward sustainable development.This study systematically assessed infrastructure related material use in 30 provinces,autonomous regions,and municipalities in China during 1978-2022.The result indicated that material stock has experienced significant growth,increasing from 16.91×10^(9)t in 1978 to 103.60×10^(9)t in 2022,with an average annual growth rate of 4.20%.However,from 1978 to 2015,material input followed a strong upward trend but saturated after 2015.At the national level,material input peaked in 2015,after which it began to decline.The central region reached its peak earlier in 2013,while the eastern and western regions peaked in 2015.Using a decoupling analysis framework,this study revealed that nationally,the elasticity value between material stock and gross domestic product(GDP)remained near or above 1.0,reflecting continued reliance on stock accumulation.Regionally,the elasticity value between material stock and GDP has increased in the central and western regions during 1978-2022,whereas elasticity value between material stock and GDP in the eastern region showed a slower growth rate but still struggled to achieve absolute decoupling.Moreover,the elasticity value between material input and GDP has declined at the national level,presenting a relative decoupling,with some regions already achieving absolute decoupling.The eastern region was closer to absolute decoupling,while the central and western regions,though still intensive in material input,exhibited faster declines in elasticity.Accelerating the transition from linear to circular economy is an essential step for China to achieve absolute decoupling and long-term sustainability.Finally,this research recommends promoting the adoption of renewable energy,driving industrial upgrading,implementing compact urban design,and extending the lifespan of infrastructure to reduce material dependency and achieve sustainable infrastructure transformation at the national level.
文摘On 13 December 2024,liquefied natural gas(LNG)company Venture Global LNG(Arlington,VA,USA)commenced commercial production of the super-chilled fuel at its partially completed Plaquemines LNG export terminal in Louisiana(Fig.1)[1].In terms of dollars invested,the 21 billion USD plant is the fourth largest infrastructure project in the world[2].Venture Global initially expected the terminal to produce and ship 20 million tonnes of LNG annually[3].An 18 billion USD expansion of the terminal approved in February 2025 will bring its maximum annual produc-tion capacity to 45 million tonnes[4].When fully operational in 2027,the facility,located in Plaquemines Parish on the Mississippi River about 32 km south of New Orleans,will be among the largest in the world,further contributing to the US position as the world’s biggest LNG exporter[1].
文摘Since its inception,the Belt and Road Initiative(BRI)has emerged as a global platform for international cooperation,with infrastructure connectivity at its core.Infrastructure,often referred to as the“lifeblood”of economic and social development,plays a pivotal role in breaking bottlenecks,bridging regional gaps,and driving inclusive growth-particularly in developing regions where inadequate infrastructure has long hindered progress.
文摘The NIST Cybersecurity Framework (NIST CSF) serves as a voluntary guideline aimed at helping organizations, tiny and medium-sized enterprises (SMEs), and critical infrastructure operators, effectively manage cyber risks. Although comprehensive, the complexity of the NIST CSF can be overwhelming, especially for those lacking extensive cybersecurity resources. Current implementation tools often cater to larger companies, neglecting the specific needs of SMEs, which can be vulnerable to cyber threats. To address this gap, our research proposes a user-friendly, open-source web platform designed to simplify the implementation of the NIST CSF. This platform enables organizations to assess their risk exposure and continuously monitor their cybersecurity maturity through tailored recommendations based on their unique profiles. Our methodology includes a literature review of existing tools and standards, followed by a description of the platform’s design and architecture. Initial tests with SMEs in Burkina Faso reveal a concerning cybersecurity maturity level, indicating the urgent need for improved strategies based on our findings. By offering an intuitive interface and cross-platform accessibility, this solution aims to empower organizations to enhance their cybersecurity resilience in an evolving threat landscape. The article concludes with discussions on the practical implications and future enhancements of the tool.
基金supported by 2020 Science and Technology Innovation Project of Shuo-Huang Railway Development Company(SHTL-20-12).
文摘Purpose–This paper aims to systematically review the evolution of inspection technologies and equipment for heavy-haul railway infrastructure,with a focus on China’s Shuohuang Railway and Daqin Railway.It summarizes the technological progression from traditional manual inspections to integrated and intelligent inspection systems,analyzes their practical application outcomes and outlines future research directions to support the safe,efficient and sustainable operation of heavy-haul railways.Design/methodology/approach–The study employs a combination of historical and empirical analysis,primarily drawing on academic literature and operational data from Shuohuang Railway.The development of inspection technologies is categorized into two distinct phases:traditional inspection and integrated inspection.The comprehensive effectiveness of these technologies is evaluated based on actual inspection efficiency,defect detection capability,cost savings and other relevant data.Findings–The adoption of integrated inspection vehicles has significantly improved inspection efficiency and accuracy.In 2014,the world’s first heavy-haul integrated inspection vehicle enabled synchronous multidisciplinary inspections,greatly reducing reliance on manual labor.By 2024,the intelligent heavy-haul integrated inspection vehicle further enhanced detection precision by 30%.Practical applications demonstrate that the annual number of track defects decreased from 25,000 to 3,800,while the track quality index(TQI)remained stable below 6 mm.Additionally,annual maintenance costs were reduced by more than 40 m yuan.Originality/value–This paper provides the first systematic review of the development of inspection technologies for heavy-haul railway infrastructure,highlighting China’s leading achievements in integrated and intelligent inspection.It clarifies the practical value of these technologies in enhancing safety,reducing costs and optimizing maintenance operations.Furthermore,it proposes future directions for development,including system integration,onboard computing capabilities and unmanned operations,offering valuable insights for technological innovation and policymaking in the field.
文摘With the continuous advancement of the country’s urbanization process,many cities are simultaneously carrying out the renovation of old urban areas while building new urban areas,which involves the demolition of many buildings and municipal infrastructures.To ensure the smooth progress of demolition projects,related safety management work is crucial.This article will discuss the safety management measures for demolition projects based on the basic principles of safety management for municipal infrastructure demolition projects,taking the demolition of gas storage tanks as an example.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2023-00242528,50%)supported by a grant from the Korea Electric Power Corporation(R24XO01-4,50%)for basic research and development projects starting in 2024.
文摘The accelerated global adoption of electric vehicles(EVs)is driving significant expansion and increasing complexity within the EV charging infrastructure,consequently presenting novel and pressing cybersecurity challenges.While considerable effort has focused on preventative cybersecurity measures,a critical deficiency persists in structured methodologies for digital forensic analysis following security incidents,a gap exacerbated by system heterogeneity,distributed digital evidence,and inconsistent logging practices which hinder effective incident reconstruction and attribution.This paper addresses this critical need by proposing a novel,data-driven forensic framework tailored to the EV charging infrastructure,focusing on the systematic identification,classification,and correlation of diverse digital evidence across its physical,network,and application layers.Our methodology integrates open-source intelligence(OSINT)with advanced system modeling based on a three-layer cyber-physical system architecture to comprehensively map potential evidentiary sources.Key contributions include a comprehensive taxonomy of cybersecurity threats pertinent to EV charging ecosystems,detailed mappings between these threats and the resultant digital evidence to guide targeted investigations,the formulation of adaptable forensic investigation workflows for various incident scenarios,and a critical analysis of significant gaps in digital evidence availability within current EV charging systems,highlighting limitations in forensic readiness.The practical application and utility of this method are demonstrated through illustrative case studies involving both empirically-derived and virtual incident scenarios.The proposed datadriven approach is designed to significantly enhance digital forensic capabilities,support more effective incident response,strengthen compliance with emerging cybersecurity regulations,and ultimately contribute to bolstering the overall security,resilience,and trustworthiness of this increasingly vital critical infrastructure.
文摘The increasing incidence of global warming and frequent heavy precipitation events presents a significant challenge for urban areas in managing extreme precipitation.Strengthening the resilience of communities to climate change is a crucial strategy for fostering sustainable urban development.Green infrastructure offers an ecologically system for rainwater management and ecological restoration,and plays a significant role in adapting to climate risks.This study focuses on climate resilience by examining the implementation of green rainwater infrastructure within the context of climate-adapted green infrastructure in the High Point community of Seattle,USA,and proposes renewal planning strategies,methods,and implementation concepts at the community level.The research indicates that the High Point community has effectively mitigated the issue of waterlogging and enhanced the local microclimate through the implementation of green infrastructure systems,including permeable pavement,rain gardens,bioretention pools,and vegetative buffer zones.It is proposed that the collaborative design of green infrastructure should adhere to principles of systematization,alignment with natural processes,adaptation to the local environment,and engagement of multiple stakeholders,while considering various functions,diverse communities,and differing social contexts.Furthermore,it should be developed in consideration of the unique spatial characteristics,landscape structures,and social needs of each community.
文摘This paper focuses on the optimization of the evaluation index system for the value of transportation infrastructure assets.It analyzes the shortcomings of the current system and explores the directions for optimizing the index system from the perspectives of functionality,economy,social impact,environmental impact,and sustainability.The paper also discusses the application of the optimized index system in practical evaluation and the measures to ensure its effectiveness.The research aims to enhance the evaluation mechanism for the value of transportation infrastructure assets,providing a more scientific basis for decision-making,addressing challenges in asset management,improving the level of asset management in transportation infrastructure,and meeting the demands of high-quality development in the transportation sector in the new era.
文摘Artificial intelligence(Al)has emerged as a key arena in major country competition.Recognizing the potential of artificial intelligence as a strategic asset to redefine the United States'global technological leadership and geopolitical influence,the Trump administration announced the Stargate project in January 2025.Trump's Al infrastructure policy is characterized by government-led connections to technology capital,loose technological regulation,security priorities,and the pursuit of political achievements.His policy goals are to achieve economic growth and job creation internally to serve the political goal of American revival,win the global AI competition,and ensure US global technological leadership.However,the policy implementation of AI infrastructure faces a few challenges,such as industrial path dependency,energy supply constraints,and ethical risks of Al.Guided by techno-nationalism,the US would continue to regard China as its primary strategic competitor.
文摘This paper provides an overview of the recent advancements in magnetic structured triboelectric nanogenerators(MSTENGs)and their potential for energy harvesting and sensing in coastal bridge infrastructure.This paper begins with a brief discussion on the fundamental physics modes of triboelectric nanogenerators(TENGs),triboelectric series,and factors affecting TENG power generation and transmission,providing a foundation for the subsequent sections.The review focuses on the different types of MSTENGs and their applications in coastal infrastructure.Specifically,it covers magnetic spherical TENG networks,magnet-assisted TENGs,MSTENGs for bridges,and magnetic multilayer structures based on TENGs.The advantages and limitations of each type of MSTENG are discussed in detail,highlighting their respective suitability for different coastal bridge infrastructure applications.In addition,the paper addresses the challenges and provides insights into the future of MSTENGs.These include the need for improved durability and sustainability of MSTENGs in harsh coastal environments,increasing their power-output levels to fulfll high energy needs,and the requirement for collaborative efforts between academia,industry,and government institutions to optimize MSTENG performance.
基金a phased achievement of a major project of the National Social Science Fund of China,titled “Research on the Security Impact of the Situation in the Bay of Bengal Region on China’s East Data West Computing Project”(Project No.:22ZDA181)。
文摘Digital infrastructure possesses dual attributes as both an international public good and a strategic communication tool for major countries. In recent years, the US has been active in the field of global digital infrastructure, showing a trend of deep coupling and mutual embedding with strategic communication. The US has built a strategic communication system for digital infrastructure. This system is designed to set the international agenda, collect information and intelligence, and deter its competitors. The system presents a three-way coherent infrastructure of a basic layer, application layer,and value layer. The mode of operation is characterized by commercial force collaboration, alliance system linkage, and global multi-domain network layout. However, to maintain its unipolar digital hegemony,the United States has over-instrumentalized its digital infrastructure and exploited and amplified the asymmetry of digital science and technology for a long period of time, which not only highlights its unilateral stance and exclusionary nature but also results in a global digital divide and trust deficit, which will pose constraints on its sustainability in the long term.
文摘Civil infrastructure is continuously subject to aging and deterioration due to multiple factors,which lead to a decline in performance and impact structural health.Accumulated damage on structures increases operational costs and poses significant risks to public safety.Effective maintenance,repair,and rehabilitation strategies are needed to ensure civil infrastructure’s overall safety and reliability.Non-Destructive Evaluation(NDE)methods are utilized to assess latent damage and provide decision-makers with real-time information for mitigating hazards.Within the last decade,there has been a significant increase in the research and development of innovative NDE techniques to improve data processing and promote efficient and accurate infrastructure assessment.This paper aims to review one of those methods,namely,Infrared Thermography(IRT),and its applications in civil infrastructure.A comprehensive review is presented by investigating numerous journal articles,research papers,and technical reports describing numerous IRT applications for bridges,buildings,and general civil structures made from different materials.The capability of IRT to identify and pinpoint anomalies,typically in the early stages of degradation,has excellent potential to improve the safety and shore up the dependability of civil infrastructures while reducing expenses tied to maintenance and rehabilitation.Furthermore,the non-invasive nature of IRT is beneficial in mitigating disturbances and downtime that may occur during various inspection procedures.It is highlighted that IRT is a highly versatile and effective tool for infrastructure condition assessment.With further advancement and fine-tuning of the available techniques,it is likely that IRT will continue to gain significant popularity in maintaining and monitoring civil infrastructure.
基金Sponsored by Scientific Research Project of Higher Learning Institutions in Anhui Province(KJ2016A150)Project of National Natural Science Foundation(41471422)
文摘Urban ecological infrastructure is the ecological background of urban sustainable development and is the basic guarantee for the construction of ecological cities. According to the characteristics of the ecological infrastructure of coal-based cities, the ecological infrastructure is divided into two subsystems:natural infrastructure subsystem and artificial infrastructure subsystem. According to each subsystem and its main components(such as atmosphere, green space, hydrology, traffic and transportation), 36 indicators were selected to establish the evaluation system. In addition, the evaluation model was established by means of mean square deviation method and composite index method, and a dynamic analysis was carried out on the ecological infrastructure quality of Huainan City in 2006-2015. The results show that the composite index of ecological infrastructure in Huainan City in 2006-2015 remained at the medium level, and the natural infrastructure at the worse and poor levels, while the artificial infrastructure remained at the medium and excellent levels.
基金the financial supports of the Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province(Grant No.LR14G03001)the National Natural Science Foundation of China(Grant No.71673237)
文摘This paper classifies total fixed capital into three categories,namely,economic infrastructure capital,social infrastructure capital and non-infrastructure capital,and then offers complete and detailed estimates of the national time series data(1981-2012) and the provincial panel data of 31 administrative regions(1997-2012).On this basis,this paper estimates the output elasticities of the three categories of capital and then tests whether or not the production function of China shows constant returns to scale.