期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Detecting P2P Botnet by Analyzing Macroscopic Characteristics with Fractal and Information Fusion
1
作者 SONG Yuanzhang 《China Communications》 SCIE CSCD 2015年第2期107-117,共11页
Towards the problems of existing detection methods,a novel real-time detection method(DMFIF) based on fractal and information fusion is proposed.It focuses on the intrinsic macroscopic characteristics of network,which... Towards the problems of existing detection methods,a novel real-time detection method(DMFIF) based on fractal and information fusion is proposed.It focuses on the intrinsic macroscopic characteristics of network,which reflect not the "unique" abnormalities of P2P botnets but the "common" abnormalities of them.It regards network traffic as the signal,and synthetically considers the macroscopic characteristics of network under different time scales with the fractal theory,including the self-similarity and the local singularity,which don't vary with the topology structures,the protocols and the attack types of P2P botnet.At first detect traffic abnormalities of the above characteristics with the nonparametric CUSUM algorithm,and achieve the final result by fusing the above detection results with the Dempster-Shafer evidence theory.Moreover,the side effect on detecting P2P botnet which web applications generated is considered.The experiments show that DMFIF can detect P2P botnet with a higher degree of precision. 展开更多
关键词 P2P botnet fractal information fusion CUSUM algorithm
在线阅读 下载PDF
Application of interacting multiple model in integrated positioning system of vehicle
2
作者 WEI Wen jun GAO Xue ze +1 位作者 GE Li rain GAO Zhong jun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期279-285,共7页
To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) ,... To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system. 展开更多
关键词 VEHICLE integrated positioning system information fusion algorithm extended Kalman filter (KEF) interacting multiple model (IMM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部