Presents a one grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theory and used to control an actual high order hydraulic system, and the whole hardware system u...Presents a one grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theory and used to control an actual high order hydraulic system, and the whole hardware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip latch, 6116 store, eight bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.展开更多
Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to ...Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.展开更多
In this paper, a successfully studied and developed master - slave muld - microcomputers control system based on PC - BUS for hollow spindle fancy yarn spinning machine, mainly Its overall scheme, software and hardwar...In this paper, a successfully studied and developed master - slave muld - microcomputers control system based on PC - BUS for hollow spindle fancy yarn spinning machine, mainly Its overall scheme, software and hardware construction, is introduced. Spinning experiments show that the system achieves satisfactory result. This system can solve the diftkultles of mechatronical fusion between domestic hollow splndk fancy yarn spuming muchine and its microcomputer control technology.展开更多
this paper describes the design of a feedback testing system for locomtive tractionmotor. The structures and features of the software and hardware of themicrocomputer control system have been studied. This testing sys...this paper describes the design of a feedback testing system for locomtive tractionmotor. The structures and features of the software and hardware of themicrocomputer control system have been studied. This testing system hasalready been put into operation successfully in several locomotive depots inChina.展开更多
In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analy...In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analyzing the efficient control of mechatronic systems enabled by generative AI for single-chip microcomputers can further highlight the value and significance of promoting AI technology applications.This paper examines the technical characteristics of generative AI in data generation,multimodal fusion,and dynamic adaptation,proposing lightweight model deployment strategies that compress large generative models to a range compatible with single-chip microcomputers,ensuring local real-time inference capabilities.It constructs an edge intelligent control architecture,enabling generative AI to directly participate in decision-making instruction generation,forming a new working system of perception,decision-making,and execution.Additionally,it designs a collaborative optimization training mechanism that leverages federated learning to overcome single-machine data limitations and enhance model generalization performance.At the application level,an intelligent fault prediction system is developed for early identification of equipment anomalies,an adaptive parameter optimization module is constructed for dynamically adjusting control strategies,and a multi-device collaborative scheduling engine is established to optimize production processes,providing technical support for embedded intelligent control in Industry 4.0 scenarios.展开更多
Taking a specific production process as an example, this paper introduces the design of multi slot and unequal temperature PID controller based on single chip microcomputer. The mathematical implementation method...Taking a specific production process as an example, this paper introduces the design of multi slot and unequal temperature PID controller based on single chip microcomputer. The mathematical implementation method of PID algorithm and the design method of the hardware and software are discussed, The principle diagram of the hardware circuit implementing the control algorithm and the features of the software possessed are also presented.展开更多
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be...In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.展开更多
The water conservancy construction and soil and water conservation projects in New China have reshaped the tea industry landscape in Xinyang City of Henan Province from multiple dimensions.In terms of hydraulic techno...The water conservancy construction and soil and water conservation projects in New China have reshaped the tea industry landscape in Xinyang City of Henan Province from multiple dimensions.In terms of hydraulic technology,engineering systems represented by the Nanwan Irrigation District redefined the watershed irrigation pattern,while the application of modern agricultural technologies such as sprinkler and electric irrigation accelerated the shift from traditional experience to scientific management in tea garden practices.Ecologically,systematic soil and water management significantly improved growing conditions,making it possible for tea cultivation to break through the traditional geographical limitation of"tea does not grow north of the Huai River."This integrated governance model not only laid the foundation for the northward expansion of Xinyang's tea industry across the Huai River but also facilitated the transition toward scale and intensification through improved irrigation infrastructure and the breeding of cold-resistant tea varieties.Ultimately,driven by the tripartite interactive mechanism of"engineering governance-ecological improvement-spatial expansion,"the tea industry in Xinyang achieved a historic leap from traditional production to modern intensive development.展开更多
The Industry 4.0 revolution is characterized by distributed infrastructures where data must be continuously communicated between hardware nodes and cloud servers.Specific lightweight cryptosystems are needed to protec...The Industry 4.0 revolution is characterized by distributed infrastructures where data must be continuously communicated between hardware nodes and cloud servers.Specific lightweight cryptosystems are needed to protect those links,as the hardware node tends to be resource-constrained.Then Pseudo Random Number Generators are employed to produce random keys,whose final behavior depends on the initial seed.To guarantee good mathematical behavior,most key generators need an unpredictable voltage signal as input.However,physical signals evolve slowly and have a significant autocorrelation,so they do not have enough entropy to support highrandomness seeds.Then,electronic mechanisms to generate those high-entropy signals artificially are required.This paper proposes a robust hyperchaotic circuit to obtain such unpredictable electric signals.The circuit is based on a hyperchaotic dynamic system,showing a large catalog of structures,four different secret parameters,and producing four high entropy voltage signals.Synchronization schemes for the correct secret key calculation and distribution among all remote communicating modules are also analyzed and discussed.Security risks and intruder and attacker models for the proposed solution are explored,too.An experimental validation based on circuit simulations and a real hardware implementation is provided.The results show that the random properties of PRNG improved by up to 11%when seeds were calculated through the proposed circuit.展开更多
The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as diff...The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as difficulty in commanding the entry steadiness and insufficient fragmentation and bulking of the goaf gangue are prevalent.In this study,a 110-mining method for roadway surrounding rock stability control technology based on a compensation mechanism was proposed.First,the composite hard roof cutting short cantilever beam(SCB)model was built and the compensation mechanism including stress and space dual compensation was studied.Subsequently,the controllable elements influencing the roadway steadiness were confirmed to consequently put forward a control technology based on stress compensation for entry support and space compensation for the fragmentation and bulking of goaf gangue.The control technology was finally verified through onsite engineering experiments in terms of composite hard roof.The adoption of the 110-mining method with compensation control technology indicated good support effect on the roadway.The initial and residual expansion coefficients of the goaf gangue increased by 0.6 and 0.6,respectively,and the maximum and average working resistances of the working face support decreased by 10.9%and 13.8%,respectively.Consequently,the deformations of reserved entry decreased,and entry steadiness was enhanced.The presented technique and effects got probably have practical values for non-pillar mining functions in comparable field.展开更多
In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the wh...In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.展开更多
Relaxation of control over the upstream business of the petroleum industry in China is discussed. The authors suggest that a basic institutional preparation should be made before relaxing control over the upstream bus...Relaxation of control over the upstream business of the petroleum industry in China is discussed. The authors suggest that a basic institutional preparation should be made before relaxing control over the upstream business, and that the institutional preparation includes at least four parts: 1) setting up the admission standards, 2) perfecting the management system of mining rights, 3) reforming the royalty and taxation system for oil and gas resources, and 4) improving the supervision and management system. Stressing the institutional preparation before relaxation of control does not mean that China could not relax control over the upstream business until the management systems are perfected, but the authors suggest that China could establish a necessary system for relaxation of control and to improve it with future practice.展开更多
The iron and steel industry is not only an important foundation of the national economy,but also the largest source of industrial air pollution.Due to the current status of emissions in the iron and steel industry,ult...The iron and steel industry is not only an important foundation of the national economy,but also the largest source of industrial air pollution.Due to the current status of emissions in the iron and steel industry,ultra-low pollutant emission control technology has been researched and developed.Liquid-phase proportion control technology has been developed for magnesian fluxed pellets,and a blast furnace smelting demonstration project has been established to use a high proportion of fluxed pellets(80%)for the first time in China to realize source emission reduction of SO_(2)and NO_(x).Based on the characteristics of high NO_(x)concentrations and the coexistence of multiple pollutants in coke oven flue gas,low-NO_(x)combustion coupled with multi-pollutant cooperative control technology with activated carbon was developed to achieve efficient removal of multiple pollutants and resource utilization of sulfur.Based on the characteristics of co-existing multiple pollutants in pellet flue gas,selective non-catalytic reduction(SNCR)coupled with ozone oxidation and spray drying adsorption(SDA)was developed,which significantly reduces the operating cost of the system.In the light of the high humidity and high alkalinity in flue gas,filter materials with high humidity resistance and corrosion resistance were manufactured,and an integrated pre-charged bag dust collector device was developed,which realized ultralow emission of fine particles and reduced filtration resistance and energy consumption in the system.Through source emission reduction,process control and end-treatment technologies,five demonstration projects were built,providing a full set of technical solutions for ultra-low emissions of dust,SO_(2),NO_(x),SO_(3),mercury and other pollutants,and offering technical support for the green development of the iron and steel industry.展开更多
After the outbreak of the Enron incident in the United States, China’s attention to internal control information disclosure has gradually increased. As a pillar industry of the national economy, real estate industry ...After the outbreak of the Enron incident in the United States, China’s attention to internal control information disclosure has gradually increased. As a pillar industry of the national economy, real estate industry internal control system is sound, which has an important impact on social stability and healthy economic development. Therefore, this paper selects a company in the real estate industry, through the analysis of its internal control information disclosure, finds out its existing problems, and puts forward practical and feasible suggestions.展开更多
The organizations used quality tools to develop their processes and gain satisfaction from the customers. The main objective of this study is to develop levels of quality in the construction industry through the use o...The organizations used quality tools to develop their processes and gain satisfaction from the customers. The main objective of this study is to develop levels of quality in the construction industry through the use of the seven basic quality control tools. Such tools are extremely crucial tools which are used worldwide in the industries for continual improvement. The seven basic quality tools are Check Sheet, Histogram, Pareto Chart, Fishbone Diagram, Control Chart, Flowchart and Scatter Diagram. They were implemented in various steps of the process in order to define the problems, measure its impacts, find out its root causes and solve these problems to ensure the production of non-defective items. The study shows how the seven basic tools of quality are very useful and effective in identifying and removal of defects from the manufacturing process. These tools are helpful in every stage of the defect removal process. This study was conducted on Cleopatra Group Company. This company succeeded to serve the public and private projects in the Egyptian construction sectors.展开更多
Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-tim...Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-time application world.All process and equipment control capability is typically provided by a Distributed Control System(DCS)in industries such as power stations,agricultural systems,chemical and water treatment plants.Instead of control through DCS,this paper proposes a SCADA and PLC(Programmable Logic Controller)system to control the ratio control division and the assembly line division inside the chemical plant.A specific design and implementation method for development of SCADA/PLC based real time ratio control and automated assembly line system in a chemical plant is introduced.The assembly line division is further divided into sorting stage,filling stage and the auxiliary stage,which includes the capping unit,labelling unit and then the storage.In the ratio control division,we have defined the levels inside the mixer and ratio of the raw materials through human machine interface(HMI)panel.The ratio of raw materials is kept constant on the basis of flow rates of wild stream and manipulated stream.There is a flexibility in defining new levels and the ratios of the raw materials inside the mixer.But here we taken the predefined levels(low,medium,high)and ratios(3:4,2:1,2:5).Control valves are used for regulating the flow of the compositions.In the assembly line division,the containers are sorted on the basis of size and type of material used i.e.,big sized metallic containers and small sized non-metallic containers by inductive and capacitive proximity sensors.All the processes are facilitated with laser beam type or reflective type sensors on the conveyor system.Building a highly stable and dependable PLC/SCADA system instead of Distributed Control System is required to achieve automatic management and control of chemical industry processes to reduce waste manpower and physical resources,as well as to improve worker safety.展开更多
The pests, diseases and weeds in sugarcane areas of Lincang Nanhua Sugar Industry Co.,Ltd. were investigated at seedling stage, growth stage and maturity stage of sugarcane from 2012 to 2016. The occurrence and damag...The pests, diseases and weeds in sugarcane areas of Lincang Nanhua Sugar Industry Co.,Ltd. were investigated at seedling stage, growth stage and maturity stage of sugarcane from 2012 to 2016. The occurrence and damage of diseases, pests and weeds were analyzed, and the problems in prevention and control were discussed based on the local conditions of sugarcane production. The species, occurrence and damage characteristics of diseases, pests and weeds were ascertained, and the corresponding strategies and technical measures were proposed.展开更多
Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing ...Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
Nuclear and radiation technologies play an important role in Polish power sector, oil industry and mining sector, starting from fossil fuels exploitation, their transport and distribution and finally power generation....Nuclear and radiation technologies play an important role in Polish power sector, oil industry and mining sector, starting from fossil fuels exploitation, their transport and distribution and finally power generation. Application of environmental isotopes, stable and radioactive, in ground water monitoring in the vicinity of open cast lignite mine, and radon monitor applied for miner’s safety in deep coal mines and nucleonic control systems for ash in coal quality control is often used in mining industry. Other applications of nuclear techniques reviewed, concern the oil industry, oil field recovery, transportation pipelines and refineries. Finally, the application of beta radiation-based gauges for air borne fly ash monitoring and radiation technology for flue gas treatment are the examples of using this technique in power sector equipped with coal and oil fired boilers [1]. The radiotracers techniques were used also in glass industry (determination and optimization parameters of the furnaces), cement industry (test of aggregates for the production of cement and optimization media transport in pipelines), metallurgy of Cu, Pb, Zn (investigation of pyrometallurgy processes and new techniques), cellulose industry, environmental and (mainly hydrological) research etc. [2]. The article is brief review of present status of radiotracer and nucleonic gauges techniques as applied to polish industry.展开更多
文摘Presents a one grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theory and used to control an actual high order hydraulic system, and the whole hardware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip latch, 6116 store, eight bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.
基金The Project Supported by Doctoral Programme Foundation of Institution of Higher Education
文摘Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.
文摘In this paper, a successfully studied and developed master - slave muld - microcomputers control system based on PC - BUS for hollow spindle fancy yarn spinning machine, mainly Its overall scheme, software and hardware construction, is introduced. Spinning experiments show that the system achieves satisfactory result. This system can solve the diftkultles of mechatronical fusion between domestic hollow splndk fancy yarn spuming muchine and its microcomputer control technology.
文摘this paper describes the design of a feedback testing system for locomtive tractionmotor. The structures and features of the software and hardware of themicrocomputer control system have been studied. This testing system hasalready been put into operation successfully in several locomotive depots inChina.
基金Single-Chip Microcomputer and Interface Technology Project(Project No.:SYSJ2025032)。
文摘In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analyzing the efficient control of mechatronic systems enabled by generative AI for single-chip microcomputers can further highlight the value and significance of promoting AI technology applications.This paper examines the technical characteristics of generative AI in data generation,multimodal fusion,and dynamic adaptation,proposing lightweight model deployment strategies that compress large generative models to a range compatible with single-chip microcomputers,ensuring local real-time inference capabilities.It constructs an edge intelligent control architecture,enabling generative AI to directly participate in decision-making instruction generation,forming a new working system of perception,decision-making,and execution.Additionally,it designs a collaborative optimization training mechanism that leverages federated learning to overcome single-machine data limitations and enhance model generalization performance.At the application level,an intelligent fault prediction system is developed for early identification of equipment anomalies,an adaptive parameter optimization module is constructed for dynamically adjusting control strategies,and a multi-device collaborative scheduling engine is established to optimize production processes,providing technical support for embedded intelligent control in Industry 4.0 scenarios.
文摘Taking a specific production process as an example, this paper introduces the design of multi slot and unequal temperature PID controller based on single chip microcomputer. The mathematical implementation method of PID algorithm and the design method of the hardware and software are discussed, The principle diagram of the hardware circuit implementing the control algorithm and the features of the software possessed are also presented.
基金supported in part by the National Natural Science Foundation of China(62125306)Zhejiang Key Research and Development Project(2024C01163)the State Key Laboratory of Industrial Control Technology,China(ICT2024A06)
文摘In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.
文摘The water conservancy construction and soil and water conservation projects in New China have reshaped the tea industry landscape in Xinyang City of Henan Province from multiple dimensions.In terms of hydraulic technology,engineering systems represented by the Nanwan Irrigation District redefined the watershed irrigation pattern,while the application of modern agricultural technologies such as sprinkler and electric irrigation accelerated the shift from traditional experience to scientific management in tea garden practices.Ecologically,systematic soil and water management significantly improved growing conditions,making it possible for tea cultivation to break through the traditional geographical limitation of"tea does not grow north of the Huai River."This integrated governance model not only laid the foundation for the northward expansion of Xinyang's tea industry across the Huai River but also facilitated the transition toward scale and intensification through improved irrigation infrastructure and the breeding of cold-resistant tea varieties.Ultimately,driven by the tripartite interactive mechanism of"engineering governance-ecological improvement-spatial expansion,"the tea industry in Xinyang achieved a historic leap from traditional production to modern intensive development.
基金supported by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politecnica de Madrid to encourage research by young doctors(PRINCE).
文摘The Industry 4.0 revolution is characterized by distributed infrastructures where data must be continuously communicated between hardware nodes and cloud servers.Specific lightweight cryptosystems are needed to protect those links,as the hardware node tends to be resource-constrained.Then Pseudo Random Number Generators are employed to produce random keys,whose final behavior depends on the initial seed.To guarantee good mathematical behavior,most key generators need an unpredictable voltage signal as input.However,physical signals evolve slowly and have a significant autocorrelation,so they do not have enough entropy to support highrandomness seeds.Then,electronic mechanisms to generate those high-entropy signals artificially are required.This paper proposes a robust hyperchaotic circuit to obtain such unpredictable electric signals.The circuit is based on a hyperchaotic dynamic system,showing a large catalog of structures,four different secret parameters,and producing four high entropy voltage signals.Synchronization schemes for the correct secret key calculation and distribution among all remote communicating modules are also analyzed and discussed.Security risks and intruder and attacker models for the proposed solution are explored,too.An experimental validation based on circuit simulations and a real hardware implementation is provided.The results show that the random properties of PRNG improved by up to 11%when seeds were calculated through the proposed circuit.
基金This work described herein was supported by the Program of China Scholarship Council(202206430008)the National Natural Science Foundation of China(NSFC)(52074300 and 52304111)+1 种基金the Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)the Guizhou province science and technology planning project([2020]3007 and[2020]2Y019).
文摘The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as difficulty in commanding the entry steadiness and insufficient fragmentation and bulking of the goaf gangue are prevalent.In this study,a 110-mining method for roadway surrounding rock stability control technology based on a compensation mechanism was proposed.First,the composite hard roof cutting short cantilever beam(SCB)model was built and the compensation mechanism including stress and space dual compensation was studied.Subsequently,the controllable elements influencing the roadway steadiness were confirmed to consequently put forward a control technology based on stress compensation for entry support and space compensation for the fragmentation and bulking of goaf gangue.The control technology was finally verified through onsite engineering experiments in terms of composite hard roof.The adoption of the 110-mining method with compensation control technology indicated good support effect on the roadway.The initial and residual expansion coefficients of the goaf gangue increased by 0.6 and 0.6,respectively,and the maximum and average working resistances of the working face support decreased by 10.9%and 13.8%,respectively.Consequently,the deformations of reserved entry decreased,and entry steadiness was enhanced.The presented technique and effects got probably have practical values for non-pillar mining functions in comparable field.
基金The authors acknowledge financial support for this research from the National Key Research and Development Program of China(2017YFB0403300 and 2017YFB043305)the National Natural Science Foundation of China(51425405 and 51874269),the National Science-Technology Support Plan Projects(2015BAB02B05)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2014037).Zhi Sun acknowledges financial support from the National Youth Thousand Talents Program.The authors acknowledge constructive suggestions from Prof.Jianxin Yang.
文摘In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.
文摘Relaxation of control over the upstream business of the petroleum industry in China is discussed. The authors suggest that a basic institutional preparation should be made before relaxing control over the upstream business, and that the institutional preparation includes at least four parts: 1) setting up the admission standards, 2) perfecting the management system of mining rights, 3) reforming the royalty and taxation system for oil and gas resources, and 4) improving the supervision and management system. Stressing the institutional preparation before relaxation of control does not mean that China could not relax control over the upstream business until the management systems are perfected, but the authors suggest that China could establish a necessary system for relaxation of control and to improve it with future practice.
基金supported by the National Key R&D Program of China(Nos.2017YFC0210600 and 2019YFC0214803)。
文摘The iron and steel industry is not only an important foundation of the national economy,but also the largest source of industrial air pollution.Due to the current status of emissions in the iron and steel industry,ultra-low pollutant emission control technology has been researched and developed.Liquid-phase proportion control technology has been developed for magnesian fluxed pellets,and a blast furnace smelting demonstration project has been established to use a high proportion of fluxed pellets(80%)for the first time in China to realize source emission reduction of SO_(2)and NO_(x).Based on the characteristics of high NO_(x)concentrations and the coexistence of multiple pollutants in coke oven flue gas,low-NO_(x)combustion coupled with multi-pollutant cooperative control technology with activated carbon was developed to achieve efficient removal of multiple pollutants and resource utilization of sulfur.Based on the characteristics of co-existing multiple pollutants in pellet flue gas,selective non-catalytic reduction(SNCR)coupled with ozone oxidation and spray drying adsorption(SDA)was developed,which significantly reduces the operating cost of the system.In the light of the high humidity and high alkalinity in flue gas,filter materials with high humidity resistance and corrosion resistance were manufactured,and an integrated pre-charged bag dust collector device was developed,which realized ultralow emission of fine particles and reduced filtration resistance and energy consumption in the system.Through source emission reduction,process control and end-treatment technologies,five demonstration projects were built,providing a full set of technical solutions for ultra-low emissions of dust,SO_(2),NO_(x),SO_(3),mercury and other pollutants,and offering technical support for the green development of the iron and steel industry.
文摘After the outbreak of the Enron incident in the United States, China’s attention to internal control information disclosure has gradually increased. As a pillar industry of the national economy, real estate industry internal control system is sound, which has an important impact on social stability and healthy economic development. Therefore, this paper selects a company in the real estate industry, through the analysis of its internal control information disclosure, finds out its existing problems, and puts forward practical and feasible suggestions.
文摘The organizations used quality tools to develop their processes and gain satisfaction from the customers. The main objective of this study is to develop levels of quality in the construction industry through the use of the seven basic quality control tools. Such tools are extremely crucial tools which are used worldwide in the industries for continual improvement. The seven basic quality tools are Check Sheet, Histogram, Pareto Chart, Fishbone Diagram, Control Chart, Flowchart and Scatter Diagram. They were implemented in various steps of the process in order to define the problems, measure its impacts, find out its root causes and solve these problems to ensure the production of non-defective items. The study shows how the seven basic tools of quality are very useful and effective in identifying and removal of defects from the manufacturing process. These tools are helpful in every stage of the defect removal process. This study was conducted on Cleopatra Group Company. This company succeeded to serve the public and private projects in the Egyptian construction sectors.
文摘Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-time application world.All process and equipment control capability is typically provided by a Distributed Control System(DCS)in industries such as power stations,agricultural systems,chemical and water treatment plants.Instead of control through DCS,this paper proposes a SCADA and PLC(Programmable Logic Controller)system to control the ratio control division and the assembly line division inside the chemical plant.A specific design and implementation method for development of SCADA/PLC based real time ratio control and automated assembly line system in a chemical plant is introduced.The assembly line division is further divided into sorting stage,filling stage and the auxiliary stage,which includes the capping unit,labelling unit and then the storage.In the ratio control division,we have defined the levels inside the mixer and ratio of the raw materials through human machine interface(HMI)panel.The ratio of raw materials is kept constant on the basis of flow rates of wild stream and manipulated stream.There is a flexibility in defining new levels and the ratios of the raw materials inside the mixer.But here we taken the predefined levels(low,medium,high)and ratios(3:4,2:1,2:5).Control valves are used for regulating the flow of the compositions.In the assembly line division,the containers are sorted on the basis of size and type of material used i.e.,big sized metallic containers and small sized non-metallic containers by inductive and capacitive proximity sensors.All the processes are facilitated with laser beam type or reflective type sensors on the conveyor system.Building a highly stable and dependable PLC/SCADA system instead of Distributed Control System is required to achieve automatic management and control of chemical industry processes to reduce waste manpower and physical resources,as well as to improve worker safety.
基金Supported by Special Fund for China Agricultural Industry Research System(CARS-170303)Special Fund for Agricultural Industry Research System of Yunnan Province(YNGZTX-4-92)
文摘The pests, diseases and weeds in sugarcane areas of Lincang Nanhua Sugar Industry Co.,Ltd. were investigated at seedling stage, growth stage and maturity stage of sugarcane from 2012 to 2016. The occurrence and damage of diseases, pests and weeds were analyzed, and the problems in prevention and control were discussed based on the local conditions of sugarcane production. The species, occurrence and damage characteristics of diseases, pests and weeds were ascertained, and the corresponding strategies and technical measures were proposed.
文摘Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
文摘Nuclear and radiation technologies play an important role in Polish power sector, oil industry and mining sector, starting from fossil fuels exploitation, their transport and distribution and finally power generation. Application of environmental isotopes, stable and radioactive, in ground water monitoring in the vicinity of open cast lignite mine, and radon monitor applied for miner’s safety in deep coal mines and nucleonic control systems for ash in coal quality control is often used in mining industry. Other applications of nuclear techniques reviewed, concern the oil industry, oil field recovery, transportation pipelines and refineries. Finally, the application of beta radiation-based gauges for air borne fly ash monitoring and radiation technology for flue gas treatment are the examples of using this technique in power sector equipped with coal and oil fired boilers [1]. The radiotracers techniques were used also in glass industry (determination and optimization parameters of the furnaces), cement industry (test of aggregates for the production of cement and optimization media transport in pipelines), metallurgy of Cu, Pb, Zn (investigation of pyrometallurgy processes and new techniques), cellulose industry, environmental and (mainly hydrological) research etc. [2]. The article is brief review of present status of radiotracer and nucleonic gauges techniques as applied to polish industry.