This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the t...The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the traditional PID control has been proven not sufficient and capable for this particular petro-chemical process.In this work,an incremental multivariable predictive functional control(IMPFC) algorithm was proposed with less online computation,great precision and fast response.An incremental transfer function matrix model was set up through the step-response data,and predictive outputs were deduced with the theory of single-value optimization.The results show that the method can optimize the incremental control variable and reject the constraint of the incremental control variable with the positional predictive functional control algorithm,and thereby making the control variable smoother.The predictive output error and future set-point were approximated by a polynomial,which can overcome the problem under the model mismatch and make the predictive outputs track the reference trajectory.Then,the design of incremental multivariable predictive functional control was studied.Simulation and application results show that the proposed control strategy is effective and feasible to improve control performance and robustness of process.展开更多
Forward and backward reaching inverse kinematics(FABRIK)is an efficient two-stage iterative solver for inverse kinematics of spherical-joint manipulator without the calculation of Jacobian matrix.Based on FABRIK,this ...Forward and backward reaching inverse kinematics(FABRIK)is an efficient two-stage iterative solver for inverse kinematics of spherical-joint manipulator without the calculation of Jacobian matrix.Based on FABRIK,this paper presents an incremental control scheme for a free-floating space manipulator consists of revolute joints and rigid links with the consideration of joint constraints and dynamic coupling effect.Due to the characteristics of FABRIK,it can induce large angular movements on specific joints.Apart from that,FABRIK maps three dimensional(3D)problem into two dimensional(2D)problem by a simple geometric projection.This operation can cause infinite loops in some cases.In order to overcome these issues and apply FABRIK on space manipulators,an increments allocation method is developed to constrain the angular movements as well as to re-orient the end-effector.The manipulator is re-positioned based on the momentum conservation law.Instead of pure target position tracking,the orientation control of the end-effector is also considered.Numerical simulation is performed to testify and demonstrate the effectiveness and reliability of the proposed incremental control approach.展开更多
This paper presents the design of an autonomous robot as a basic development of an intelligent wheeled mobile robot for air duct or corridor cleaning. The robot navigation is based on wall following algorithm. The rob...This paper presents the design of an autonomous robot as a basic development of an intelligent wheeled mobile robot for air duct or corridor cleaning. The robot navigation is based on wall following algorithm. The robot is controlled using fuzzy incremental controller (FIC) and embedded in PIC18F4550 microcontroller. FIC guides the robot to move along a wall in a desired direction by maintaining a constant distance to the wall. Two ultrasonic sensors are installed in the left side of the robot to sense the wall distance. The signals from these sensors are fed to FIC that then used to determine the speed control of two DC motors. The robot movement is obtained through differentiating the speed of these two motors. The experimental results show that FIC is successfully controlling the robot to follow the wall as a guidance line and has good performance compare with PID controller.展开更多
This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a ...This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.展开更多
风电参与系统调频是提升新能源高占比电力系统频率安全稳定水平的关键措施之一。然而风电机组的现有调频控制策略难以适应系统多样化的功率扰动,未能充分发挥风电机组的快速频率支撑能力。建立了直驱型风电机组调频控制的通用电磁暂态模...风电参与系统调频是提升新能源高占比电力系统频率安全稳定水平的关键措施之一。然而风电机组的现有调频控制策略难以适应系统多样化的功率扰动,未能充分发挥风电机组的快速频率支撑能力。建立了直驱型风电机组调频控制的通用电磁暂态模型,并对现有调频控制策略下风电机组的动态特性进行了分析,明确了限制其调频能力的原因。在此基础上,通过建立计及风电调频的改进系统频率响应模型,实现了系统功率扰动程度的评估,并进一步提出了基于该评估结果的风电机组的主动频率支撑控制策略。该策略基于扰动发生后的最大频率变化率(rate of change of frequency, RoCoF)判断系统功率扰动程度,结合风电机组的运行模式,选择不同的调频控制组合,能够在充分发挥风电机组的主动频率支撑能力的同时,显著降低系统频率的二次跌落风险。仿真结果表明,相比于定参数调频策略和传统自适应调频策略,所提方法在不同扰动程度下的调频性能优势明显,证明了方法的有效性。展开更多
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金Project(61203021)supported by the National Natural Science Foundation of ChinaProject(2011216011)supported by the Scientific and Technological Program of Liaoning Province,China+2 种基金Project(2013020024)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2012BAF05B00)supported by the National Science and Technology Support Program,ChinaProject(LJQ2015061)supported by the Program for Liaoning Excellent Talents in Universities,China
文摘The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the traditional PID control has been proven not sufficient and capable for this particular petro-chemical process.In this work,an incremental multivariable predictive functional control(IMPFC) algorithm was proposed with less online computation,great precision and fast response.An incremental transfer function matrix model was set up through the step-response data,and predictive outputs were deduced with the theory of single-value optimization.The results show that the method can optimize the incremental control variable and reject the constraint of the incremental control variable with the positional predictive functional control algorithm,and thereby making the control variable smoother.The predictive output error and future set-point were approximated by a polynomial,which can overcome the problem under the model mismatch and make the predictive outputs track the reference trajectory.Then,the design of incremental multivariable predictive functional control was studied.Simulation and application results show that the proposed control strategy is effective and feasible to improve control performance and robustness of process.
基金supported by the National Natural Science Foundation of China(Nos.61803312,91848205 and 61725303).
文摘Forward and backward reaching inverse kinematics(FABRIK)is an efficient two-stage iterative solver for inverse kinematics of spherical-joint manipulator without the calculation of Jacobian matrix.Based on FABRIK,this paper presents an incremental control scheme for a free-floating space manipulator consists of revolute joints and rigid links with the consideration of joint constraints and dynamic coupling effect.Due to the characteristics of FABRIK,it can induce large angular movements on specific joints.Apart from that,FABRIK maps three dimensional(3D)problem into two dimensional(2D)problem by a simple geometric projection.This operation can cause infinite loops in some cases.In order to overcome these issues and apply FABRIK on space manipulators,an increments allocation method is developed to constrain the angular movements as well as to re-orient the end-effector.The manipulator is re-positioned based on the momentum conservation law.Instead of pure target position tracking,the orientation control of the end-effector is also considered.Numerical simulation is performed to testify and demonstrate the effectiveness and reliability of the proposed incremental control approach.
文摘This paper presents the design of an autonomous robot as a basic development of an intelligent wheeled mobile robot for air duct or corridor cleaning. The robot navigation is based on wall following algorithm. The robot is controlled using fuzzy incremental controller (FIC) and embedded in PIC18F4550 microcontroller. FIC guides the robot to move along a wall in a desired direction by maintaining a constant distance to the wall. Two ultrasonic sensors are installed in the left side of the robot to sense the wall distance. The signals from these sensors are fed to FIC that then used to determine the speed control of two DC motors. The robot movement is obtained through differentiating the speed of these two motors. The experimental results show that FIC is successfully controlling the robot to follow the wall as a guidance line and has good performance compare with PID controller.
文摘This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.
文摘风电参与系统调频是提升新能源高占比电力系统频率安全稳定水平的关键措施之一。然而风电机组的现有调频控制策略难以适应系统多样化的功率扰动,未能充分发挥风电机组的快速频率支撑能力。建立了直驱型风电机组调频控制的通用电磁暂态模型,并对现有调频控制策略下风电机组的动态特性进行了分析,明确了限制其调频能力的原因。在此基础上,通过建立计及风电调频的改进系统频率响应模型,实现了系统功率扰动程度的评估,并进一步提出了基于该评估结果的风电机组的主动频率支撑控制策略。该策略基于扰动发生后的最大频率变化率(rate of change of frequency, RoCoF)判断系统功率扰动程度,结合风电机组的运行模式,选择不同的调频控制组合,能够在充分发挥风电机组的主动频率支撑能力的同时,显著降低系统频率的二次跌落风险。仿真结果表明,相比于定参数调频策略和传统自适应调频策略,所提方法在不同扰动程度下的调频性能优势明显,证明了方法的有效性。