The output-signal models and impulse response shaping(IRS)functions of semiconductor detectors are important for establishing high-precision measurement systems.In this paper,an output-signal model for semiconductor d...The output-signal models and impulse response shaping(IRS)functions of semiconductor detectors are important for establishing high-precision measurement systems.In this paper,an output-signal model for semiconductor detector systems is proposed.According to the proposed model,a multistage cascade deconvolution IRS algorithm was developed using the C-R inverse system,R-C inverse system,and differentiator system.The silicon drift detector signals acquired from the analog-to-digital converter were tested.The experimental results indicated that the shaped pulses obtained using the proposed model had no undershoot,and the average peak base width of the output shaped pulses was reduced by 36%compared with that for a simple model proposed in a previous work[1].Offline processing results indicated that compared with the traditional IRS algorithm,the average peak base width of the output shaped pulses obtained using the proposed algorithm was reduced by 11%,and the total elapsed time required for pulse shaping was reduced by 26%.The proposed algorithm avoids recursive calculation.If the sampling frequency of the digital system reaches 100 MHz,the proposed algorithm can be simplified to integer arithmetic.The proposed IRS algorithm can be applied to high-resolution energy spectrum analysis,highcounting rate energy spectrum correction,and coincidence and anti-coincidence measurements.展开更多
In this paper, an efficient technique for optimal design of digital infinite impulse response (IIR) filter with minimum passband error (ep), minimum stopband error (es), high stopband attenuation (As), and als...In this paper, an efficient technique for optimal design of digital infinite impulse response (IIR) filter with minimum passband error (ep), minimum stopband error (es), high stopband attenuation (As), and also free from limit cycle effect is proposed using cuckoo search (CS) algorithm. In the proposed method, error function, which is multi-model and non-differentiable in the heuristic surface, is constructed as the mean squared difference between the designed and desired response in frequency domain, and is optimized using CS algorithm. Computational efficiency of the proposed technique for exploration in search space is examined, and during exploration, stability of filter is maintained by considering lattice representation of the denominator polynomials, which requires less computational complexity as well as it improves the exploration ability in search space for designing higher filter taps. A comparative study of the proposed method with other algorithms is made, and the obtained results show that 90% reduction in errors is achieved using the proposed method. However, computational complexity in term of CPU time is increased as compared to other existing algorithms.展开更多
The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of ...The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of the load disturbance, a novel error compensation method is proposed. Then predictive functional control of integrating process is designed. The method given generates a simple control structure, which can significandy reduce online computation. Furthermore, the tuning of the controller is fairly straightforward. Simulation results indicate that the designed control system is relatively robust to the parameters variation of the process.展开更多
In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may ca...In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may cause a focused brevity impact in a chaos-response system. The physical principle for this phenomenon is that the wave interferes or multiples superposition. Based on this knowledge, a new view toward the mechanism for preparing and triggering an earthquake is proposed. Finally, an interpretation of crust response to the sea tides is given.展开更多
A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component ana...A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm.展开更多
Some fast finite impulse response (FIR) filters use a large number of look-up tables (LUTs) to configure distributed random-access memories (RAMs) and save registers. The distributed RAMs store 2M precomputed sums of ...Some fast finite impulse response (FIR) filters use a large number of look-up tables (LUTs) to configure distributed random-access memories (RAMs) and save registers. The distributed RAMs store 2M precomputed sums of M permuted operands in order to simplify the accumulation, which lays similarity to the solution of Boolean satisfiability (SAT) problem. In this work, a high-speed fault-tolerant FIR digital filter on field programmable gate array (FPGA) is proposed for hardware implementation. A shift register and an RAM are used to arrange the data flow. Generally, an N-tap digital filter only requires N embedded multipliers on FPGA. The better performance is due to high-radix words and low-latency operations. A 32-tap 8-bit FIR digital filter enjoys a throughput of 9.17 MB/s, taking 109 ns to calculate one convolution. In addition, a fault-tolerant scheme by majority logic is used to correct real-time errors within digital filters.展开更多
In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coef...In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.展开更多
An efficient method is proposed for the design of finite impulse response(FIR) filter with arbitrary pass band edge,stop band edge frequencies and transition width.The proposed FIR band stop filter is designed using c...An efficient method is proposed for the design of finite impulse response(FIR) filter with arbitrary pass band edge,stop band edge frequencies and transition width.The proposed FIR band stop filter is designed using craziness based particle swarm optimization(CRPSO) approach.Given the filter specifications to be realized,the CRPSO algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristics.In this paper,for the given problem,the realizations of the optimal FIR band pass filters of different orders have been performed.The simulation results have been compared with those obtained by the well accepted evolutionary algorithms,such as Parks and McClellan algorithm(PMA),genetic algorithm(GA) and classical particle swarm optimization(PSO).Several numerical design examples justify that the proposed optimal filter design approach using CRPSO outperforms PMA and PSO,not only in the accuracy of the designed filter but also in the convergence speed and solution quality.展开更多
This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so t...This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.展开更多
This paper examines the environmental impact of green assets using machine learning and impulse responses by local projections.A series of 87 green assets from various classes are considered,namely firms providing ren...This paper examines the environmental impact of green assets using machine learning and impulse responses by local projections.A series of 87 green assets from various classes are considered,namely firms providing renewable energy and carbon offset solutions,carbon and sustainable investing ETFs and green cryptocurrencies.The dataset spans the period from 2015 to 2022 and comprises globally sourced environmental and financial data.The current study examines whether asset prices,returns and trading volumes have an impact on environmental indicators such as temperature(global mean and anomalies)and greenhouse gas concentration.The results indicate that adoption of these green assets does not have a significant environmental impact,suggesting that they should not be used as substitutes for real climate action.This work serves as a cautionary tale on the nexus between green assets and environmental indicators and the results can be used by governments and corporations when formulating climate and ESG strategies.展开更多
With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivota...With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivotal role in the practical applications of laser gyros.By analysis of the output signals from a laser gyro and an accelerometer,this paper presents a circuit design for signal acquisition of the laser gyro based on domestic devices.The design incorporates a finite impulse response(FIR)filter to process the gyro signal and employs a small-volume,impact-resistant quartz flexible accelerometer for signal aquisition.Simulation results demonstrate that the errors in X,Y,and Z axes fall within acceptable ranges while meeting filtering requirements.The use of FPGA for signal acquisition and preprocessing enhances configuration flexibility,which provides an idea and method for optimizing performance and processing signals in laser gyro applications.展开更多
The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure t...The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.展开更多
Ultrasonic transmitting, receiving and amplifying circuits are designed. Thereceived signals are sampled with the high speed ADC (analog-to-digital converter), and dealt withthe DSP (digital signal processing). A forw...Ultrasonic transmitting, receiving and amplifying circuits are designed. Thereceived signals are sampled with the high speed ADC (analog-to-digital converter), and dealt withthe DSP (digital signal processing). A forward-backward IIR (infinitive impulse response) filterwith no delay is designed to filter the sampled data, and series A and B are achieved by narrow andwide band filtering, respectively. In series A, the start point of the cycle first exceeding thethreshold is calculated accuratelyby interpolation, and the start cycle is detected by fittingcycles in series A and its inversion A' to cycles in B with variance analysis. Therefore, the startpoint of the start cycle is calculated precisely. By deriving the relationships between the traveltime in the opposite directions of three axes and the airflow velocities, the wind velocity anddirection are calculated. Experiments show that the reliability and the precision are improved, andthe circuits are simplified.展开更多
From the perspective of long-term and short-term, the methods of TY causality test, generalized impulse response function, variance decomposition were used to investigate the impacts of international oil prices and ma...From the perspective of long-term and short-term, the methods of TY causality test, generalized impulse response function, variance decomposition were used to investigate the impacts of international oil prices and macroeconomic variables on Chinese gold, silver and platinum prices, but also the feedback effects of Chinese precious metal prices under this impact. The results show that international oil prices play an important role in precious metal price variation both in long-term and short-term, and exchange rate only has an effect in short-term, while interest rate is ineffective in predicting precious metal prices. In addition, precious metal prices have some feedback effects on international oil prices and interest rate in short-term.展开更多
Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories o...Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.展开更多
In this paper,we highlight some recent developments of a new route to evaluate macroeconomic policy effects,which are investigated under the framework with potential outcomes.First,this paper begins with a brief intro...In this paper,we highlight some recent developments of a new route to evaluate macroeconomic policy effects,which are investigated under the framework with potential outcomes.First,this paper begins with a brief introduction of the basic model setup in modern econometric analysis of program evaluation.Secondly,primary attention goes to the focus on causal effect estimation of macroeconomic policy with single time series data together with some extensions to multiple time series data.Furthermore,we examine the connection of this new approach to traditional macroeconomic models for policy analysis and evaluation.Finally,we conclude by addressing some possible future research directions in statistics and econometrics.展开更多
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ...Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.展开更多
In this paper,the Kalman filter(KF)and the unbiased finite impulse response(UFIR)filter are fused in the discrete-time state-space to improve robustness against uncertainties.To avoid the problem where fusion filters ...In this paper,the Kalman filter(KF)and the unbiased finite impulse response(UFIR)filter are fused in the discrete-time state-space to improve robustness against uncertainties.To avoid the problem where fusion filters may give up some advantages of UFIR filters by fusing based on noise statistics,we attempt to find a way to fuse without using noise statistics.The fusion filtering algorithm is derived using the influence function that provides a quantified measure for disturbances on the resulting filtering outputs and is termed as an influence finite impulse response(IFIR)filter.The main advantage of the proposed method is that the noise statistics of process noise and measurement noise are no longer required in the fusion process,showing that a critical feature of the UFIR filter is inherited.One numerical example and a practice-oriented case are given to illustrate the effectiveness of the proposed method.It is shown that the IFIR filter has adaptive performance and can automatically switch from the Kalman estimate to the UFIR estimates according to operating conditions.Moreover,the proposed method can reduce the effects of optimal horizon length on the UFIR estimate and can give the state estimates of best accuracy among all the compared methods.展开更多
In frequency domain,the power spectrum of Low-rate denial of service(LDoS) attacks is totally spread into the spectrum of normal traffic.It is a challenging task to detect and filter LDoS attack flows from the normal ...In frequency domain,the power spectrum of Low-rate denial of service(LDoS) attacks is totally spread into the spectrum of normal traffic.It is a challenging task to detect and filter LDoS attack flows from the normal traffic.Based on the analysis of LDoS attack flows and legitimate TCP traffic in time and frequency domains,the periodicity of the TCP traffic and LDoS attack flows is explored to facilitate the research of network traffic processing.Hence,an approach of LDoS attack flow filtering based on frequency spectrum analysis is proposed.In this approach,the TCP traffic and LDoS attack flows are transformed from the time domain into the frequency domain.Then the round-trip time(RTT) is estimated by using frequency domain search method.Analysis of amplitude spectrum shows that TCP traffic energy is mainly concentrated on the points of n/RTT.Therefore,a comb filter using infinite impulse response(IIR) filter is designed to filter out the LDoS attack flows in frequency domain,while most legitimate TCP traffic energy at the points of n/RTT are pass through.Experimental results show that the maximum pass rate for legitimate TCP traffic reaches 92.55%,while the maximum filtration rate of LDoS attack flows reaches 81.36%.The proposed approach can effectively filter the LDoS attack flows while less impact on the legitimate TCP traffic.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11975060,12005026,and 12075038)the Major Science and Technology Project in Sichuan Province(No.19ZDZD0137)the Sichuan Science and Technology Program(No.2020YFG0019).
文摘The output-signal models and impulse response shaping(IRS)functions of semiconductor detectors are important for establishing high-precision measurement systems.In this paper,an output-signal model for semiconductor detector systems is proposed.According to the proposed model,a multistage cascade deconvolution IRS algorithm was developed using the C-R inverse system,R-C inverse system,and differentiator system.The silicon drift detector signals acquired from the analog-to-digital converter were tested.The experimental results indicated that the shaped pulses obtained using the proposed model had no undershoot,and the average peak base width of the output shaped pulses was reduced by 36%compared with that for a simple model proposed in a previous work[1].Offline processing results indicated that compared with the traditional IRS algorithm,the average peak base width of the output shaped pulses obtained using the proposed algorithm was reduced by 11%,and the total elapsed time required for pulse shaping was reduced by 26%.The proposed algorithm avoids recursive calculation.If the sampling frequency of the digital system reaches 100 MHz,the proposed algorithm can be simplified to integer arithmetic.The proposed IRS algorithm can be applied to high-resolution energy spectrum analysis,highcounting rate energy spectrum correction,and coincidence and anti-coincidence measurements.
文摘In this paper, an efficient technique for optimal design of digital infinite impulse response (IIR) filter with minimum passband error (ep), minimum stopband error (es), high stopband attenuation (As), and also free from limit cycle effect is proposed using cuckoo search (CS) algorithm. In the proposed method, error function, which is multi-model and non-differentiable in the heuristic surface, is constructed as the mean squared difference between the designed and desired response in frequency domain, and is optimized using CS algorithm. Computational efficiency of the proposed technique for exploration in search space is examined, and during exploration, stability of filter is maintained by considering lattice representation of the denominator polynomials, which requires less computational complexity as well as it improves the exploration ability in search space for designing higher filter taps. A comparative study of the proposed method with other algorithms is made, and the obtained results show that 90% reduction in errors is achieved using the proposed method. However, computational complexity in term of CPU time is increased as compared to other existing algorithms.
基金This work was supported by National Science Fundation of China (No.60274032)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No.20030248040)and Alexander von Humboldt Research Fellowship
文摘The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of the load disturbance, a novel error compensation method is proposed. Then predictive functional control of integrating process is designed. The method given generates a simple control structure, which can significandy reduce online computation. Furthermore, the tuning of the controller is fairly straightforward. Simulation results indicate that the designed control system is relatively robust to the parameters variation of the process.
基金State Natural Science Foundation (49834002) and the science foundation of HUST (J151005).
文摘In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may cause a focused brevity impact in a chaos-response system. The physical principle for this phenomenon is that the wave interferes or multiples superposition. Based on this knowledge, a new view toward the mechanism for preparing and triggering an earthquake is proposed. Finally, an interpretation of crust response to the sea tides is given.
基金Project supported by the Shanghai Natural Science Foundation (Grant No.08ZR1408300)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm.
文摘Some fast finite impulse response (FIR) filters use a large number of look-up tables (LUTs) to configure distributed random-access memories (RAMs) and save registers. The distributed RAMs store 2M precomputed sums of M permuted operands in order to simplify the accumulation, which lays similarity to the solution of Boolean satisfiability (SAT) problem. In this work, a high-speed fault-tolerant FIR digital filter on field programmable gate array (FPGA) is proposed for hardware implementation. A shift register and an RAM are used to arrange the data flow. Generally, an N-tap digital filter only requires N embedded multipliers on FPGA. The better performance is due to high-radix words and low-latency operations. A 32-tap 8-bit FIR digital filter enjoys a throughput of 9.17 MB/s, taking 109 ns to calculate one convolution. In addition, a fault-tolerant scheme by majority logic is used to correct real-time errors within digital filters.
文摘In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.
文摘An efficient method is proposed for the design of finite impulse response(FIR) filter with arbitrary pass band edge,stop band edge frequencies and transition width.The proposed FIR band stop filter is designed using craziness based particle swarm optimization(CRPSO) approach.Given the filter specifications to be realized,the CRPSO algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristics.In this paper,for the given problem,the realizations of the optimal FIR band pass filters of different orders have been performed.The simulation results have been compared with those obtained by the well accepted evolutionary algorithms,such as Parks and McClellan algorithm(PMA),genetic algorithm(GA) and classical particle swarm optimization(PSO).Several numerical design examples justify that the proposed optimal filter design approach using CRPSO outperforms PMA and PSO,not only in the accuracy of the designed filter but also in the convergence speed and solution quality.
文摘This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.
文摘This paper examines the environmental impact of green assets using machine learning and impulse responses by local projections.A series of 87 green assets from various classes are considered,namely firms providing renewable energy and carbon offset solutions,carbon and sustainable investing ETFs and green cryptocurrencies.The dataset spans the period from 2015 to 2022 and comprises globally sourced environmental and financial data.The current study examines whether asset prices,returns and trading volumes have an impact on environmental indicators such as temperature(global mean and anomalies)and greenhouse gas concentration.The results indicate that adoption of these green assets does not have a significant environmental impact,suggesting that they should not be used as substitutes for real climate action.This work serves as a cautionary tale on the nexus between green assets and environmental indicators and the results can be used by governments and corporations when formulating climate and ESG strategies.
文摘With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivotal role in the practical applications of laser gyros.By analysis of the output signals from a laser gyro and an accelerometer,this paper presents a circuit design for signal acquisition of the laser gyro based on domestic devices.The design incorporates a finite impulse response(FIR)filter to process the gyro signal and employs a small-volume,impact-resistant quartz flexible accelerometer for signal aquisition.Simulation results demonstrate that the errors in X,Y,and Z axes fall within acceptable ranges while meeting filtering requirements.The use of FPGA for signal acquisition and preprocessing enhances configuration flexibility,which provides an idea and method for optimizing performance and processing signals in laser gyro applications.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia,has funded this project under Grant No.(KEP-PhD:72-130-1443).
文摘The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.
文摘Ultrasonic transmitting, receiving and amplifying circuits are designed. Thereceived signals are sampled with the high speed ADC (analog-to-digital converter), and dealt withthe DSP (digital signal processing). A forward-backward IIR (infinitive impulse response) filterwith no delay is designed to filter the sampled data, and series A and B are achieved by narrow andwide band filtering, respectively. In series A, the start point of the cycle first exceeding thethreshold is calculated accuratelyby interpolation, and the start cycle is detected by fittingcycles in series A and its inversion A' to cycles in B with variance analysis. Therefore, the startpoint of the start cycle is calculated precisely. By deriving the relationships between the traveltime in the opposite directions of three axes and the airflow velocities, the wind velocity anddirection are calculated. Experiments show that the reliability and the precision are improved, andthe circuits are simplified.
基金Project(13&ZD169)supported by the Major Program of the National Social Science Foundation,ChinaProject(13YJAZH149)supported by Research Project in Humanities and Social Sciences Conducted by the Ministry of Education,China+2 种基金Project(2011ZK2043)supported by the Key Program of the Soft Science Research Project of Hunan Province,ChinaProject(2015JJ2182)supported by Natural Science Foundation of Hunan Province of ChinaProject(2009JYJR035)supported by Emergency Project "The Study of International Financial Crisis" of Ministry of Education of China
文摘From the perspective of long-term and short-term, the methods of TY causality test, generalized impulse response function, variance decomposition were used to investigate the impacts of international oil prices and macroeconomic variables on Chinese gold, silver and platinum prices, but also the feedback effects of Chinese precious metal prices under this impact. The results show that international oil prices play an important role in precious metal price variation both in long-term and short-term, and exchange rate only has an effect in short-term, while interest rate is ineffective in predicting precious metal prices. In addition, precious metal prices have some feedback effects on international oil prices and interest rate in short-term.
基金The project supported by the National Outstanding Youth Science Foundation of China (10425208)the National Natural Science Foundation of ChinaInstitute of Engineering Physics of China (10376002) The English text was polished by Keren Wang
文摘Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.
基金the National Natural Science Foundation of China(71631004,Key Project)the National Science Fund for Distinguished Young Scholars(71625001)+2 种基金the Basic Scientific Center Project of National Science Foundation of China:Econometrics and Quantitative Policy Evaluation(71988101)the Science Foundation of Ministry of Education of China(19YJA910003)China Scholarship Council Funded Project(201806315045).
文摘In this paper,we highlight some recent developments of a new route to evaluate macroeconomic policy effects,which are investigated under the framework with potential outcomes.First,this paper begins with a brief introduction of the basic model setup in modern econometric analysis of program evaluation.Secondly,primary attention goes to the focus on causal effect estimation of macroeconomic policy with single time series data together with some extensions to multiple time series data.Furthermore,we examine the connection of this new approach to traditional macroeconomic models for policy analysis and evaluation.Finally,we conclude by addressing some possible future research directions in statistics and econometrics.
基金the State Key Program of National Natural Science of China under Grant No.51138001Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No.51121005Open Research Fund Program of State key Laboratory of Hydro science and Engineering under Grant No.shlhse-2010-C-03
文摘Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.
基金supported in part by the National Natural Science Foundation of China(61973136,61991402,61833007)the Natural Science Foundation of Jiangsu Province(BK20211528)。
文摘In this paper,the Kalman filter(KF)and the unbiased finite impulse response(UFIR)filter are fused in the discrete-time state-space to improve robustness against uncertainties.To avoid the problem where fusion filters may give up some advantages of UFIR filters by fusing based on noise statistics,we attempt to find a way to fuse without using noise statistics.The fusion filtering algorithm is derived using the influence function that provides a quantified measure for disturbances on the resulting filtering outputs and is termed as an influence finite impulse response(IFIR)filter.The main advantage of the proposed method is that the noise statistics of process noise and measurement noise are no longer required in the fusion process,showing that a critical feature of the UFIR filter is inherited.One numerical example and a practice-oriented case are given to illustrate the effectiveness of the proposed method.It is shown that the IFIR filter has adaptive performance and can automatically switch from the Kalman estimate to the UFIR estimates according to operating conditions.Moreover,the proposed method can reduce the effects of optimal horizon length on the UFIR estimate and can give the state estimates of best accuracy among all the compared methods.
基金supported in part by the National Natural Science Foundation under grant No.U1533107the Major Program of Natural Science Foundation of Tianjin under grant No.17JCZDJC30900+1 种基金the Fundamental Research Funds for the Central Universities of CAUC under grant No.3122016D003the graduate program of curriculum development project of Civil Aviation University of China(2050070515)
文摘In frequency domain,the power spectrum of Low-rate denial of service(LDoS) attacks is totally spread into the spectrum of normal traffic.It is a challenging task to detect and filter LDoS attack flows from the normal traffic.Based on the analysis of LDoS attack flows and legitimate TCP traffic in time and frequency domains,the periodicity of the TCP traffic and LDoS attack flows is explored to facilitate the research of network traffic processing.Hence,an approach of LDoS attack flow filtering based on frequency spectrum analysis is proposed.In this approach,the TCP traffic and LDoS attack flows are transformed from the time domain into the frequency domain.Then the round-trip time(RTT) is estimated by using frequency domain search method.Analysis of amplitude spectrum shows that TCP traffic energy is mainly concentrated on the points of n/RTT.Therefore,a comb filter using infinite impulse response(IIR) filter is designed to filter out the LDoS attack flows in frequency domain,while most legitimate TCP traffic energy at the points of n/RTT are pass through.Experimental results show that the maximum pass rate for legitimate TCP traffic reaches 92.55%,while the maximum filtration rate of LDoS attack flows reaches 81.36%.The proposed approach can effectively filter the LDoS attack flows while less impact on the legitimate TCP traffic.