期刊文献+
共找到757篇文章
< 1 2 38 >
每页显示 20 50 100
Deep Learning Mixed Hyper-Parameter Optimization Based on Improved Cuckoo Search Algorithm
1
作者 TONG Yu CHEN Rong HU Biling 《Wuhan University Journal of Natural Sciences》 2025年第2期195-204,共10页
Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,... Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,integer,or mixed,and are often given based on experience but largely affect the effectiveness of activity recognition.In order to adapt to different hyper-parameter optimization problems,our improved Cuckoo Search(CS)algorithm is proposed to optimize the mixed hyper-parameters in deep learning algorithm.The algorithm optimizes the hyper-parameters in the deep learning model robustly,and intelligently selects the combination of integer type and continuous hyper-parameters that make the model optimal.Then,the mixed hyper-parameter in Convolutional Neural Network(CNN),Long-Short-Term Memory(LSTM)and CNN-LSTM are optimized based on the methodology on the smart home activity recognition datasets.Results show that the methodology can improve the performance of the deep learning model and whether we are experienced or not,we can get a better deep learning model using our method. 展开更多
关键词 improved Cuckoo search algorithm mixed hyper-parameter OPTIMIZATION deep learning
原文传递
Estimation of state of health based on charging characteristics and back-propagation neural networks with improved atom search optimization algorithm 被引量:4
2
作者 Yu Zhang Yuhang Zhang Tiezhou Wu 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期228-237,共10页
With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an import... With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an important role in maintaining a safe and stable operation of lithium-ion batteries. To address the problems of uncertain battery discharge conditions and low SOH estimation accuracy in practical applications, this paper proposes a SOH estimation method based on constant-current battery charging section characteristics with a back-propagation neural network with an improved atom search optimization algorithm. A temperature characteristic, equal-time temperature variation(Dt_DT), is proposed by analyzing the temperature data of the battery charging section with the incremental capacity(IC) characteristics obtained from an IC analysis as an input to the data-driven prediction model. Testing and analysis of the proposed prediction model are carried out using publicly available datasets. Experimental results show that the maximum error of SOH estimation results for the proposed method in this paper is below 1.5%. 展开更多
关键词 State of health Lithium-ion battery Dt_DT improved atom search optimization algorithm
在线阅读 下载PDF
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm 被引量:1
3
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
在线阅读 下载PDF
Classification for Glass Bottles Based on Improved Selective Search Algorithm
4
作者 Shuqiang Guo Baohai Yue +2 位作者 Manyang Gao Xinxin Zhou Bo Wang 《Computers, Materials & Continua》 SCIE EI 2020年第7期233-251,共19页
The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in spe... The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in specifications and models.This paper proposes a classification algorithm for glass bottles that is divided into two stages,namely the extraction of candidate regions and the classification of classifiers.In the candidate region extraction stage,aiming at the problem of the large time overhead caused by the use of the SIFT(scale-invariant feature transform)descriptor in SS(selective search),an improved feature of HLSN(Haar-like based on SPP-Net)is proposed.An integral graph is introduced to accelerate the process of forming an HBSN vector,which overcomes the problem of repeated texture feature calculation in overlapping regions by SS.In the classification stage,the improved SS algorithm is used to extract target regions.The target regions are merged using a non-maximum suppression algorithm according to the classification scores of the respective regions,and the merged regions are classified using the trained classifier.Experiments demonstrate that,compared with the original SS,the improved SS algorithm increases the calculation speed by 13.8%,and its classification accuracy is 89.4%.Additionally,the classification algorithm for glass bottles has a certain resistance to noise. 展开更多
关键词 Classification of glass bottle HBSN feature improved selective search algorithm LightGBM
在线阅读 下载PDF
Improved hyper-spherical search algorithm for voltage total harmonic distortion minimization in 27-level inverter
5
作者 A A KHODADOOST ARANI H KARAMI +1 位作者 B VAHIDI G B GHAREHPETIAN 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2822-2832,共11页
Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special... Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special advantages among them such as more different output voltage levels using the same number of components and higher power quality.In this paper,a 27-level inverter switching algorithm considering total harmonic distortion(THD)minimization is investigated.Switching angles of the inverter switches are achieved by minimizing a THD-based objective function.In order to minimize the THD-based objective function,the hyper-spherical search(HSS)algorithm,as a novel optimization algorithm,is improved and the results of improved HSS(IHSS)are compared with HSS algorithm and other five evolutionary algorithms to show the advantages of IHSS algorithm. 展开更多
关键词 27-level inverter cascade multi-level inverter improved hyper-spherical search(IHSS)algorithm total harmonic distortion(THD)minimization
在线阅读 下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
6
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
在线阅读 下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network 被引量:1
7
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
在线阅读 下载PDF
Symmetric Workpiece Localization Algorithms: Convergence and Improvements 被引量:2
8
作者 CHEN Shan-Yong LI Sheng-Yi DAI Yi-Fan 《自动化学报》 EI CSCD 北大核心 2006年第3期428-432,共5页
Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each sub... Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way. 展开更多
关键词 对称加工件 局限性 线性搜索 收敛性
在线阅读 下载PDF
Improved Interleaved Single-Ended Primary Inductor-Converter forSingle-Phase Grid-Connected System
9
作者 T.J.Thomas Thangam K.Muthu Vel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3459-3478,共20页
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr... The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed. 展开更多
关键词 improved interleaved DC-DC SEPIC converter crow search algorithm PI controller voltage source inverter PV array single phase grid
在线阅读 下载PDF
一种改进的Tabu Search算法及其在区域电网无功优化中的应用 被引量:4
10
作者 李益华 林文南 《电力科学与技术学报》 CAS 2008年第2期60-65,共6页
提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动&qu... 提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动"采取"有条件地释放Tabu表中的记录"这一策略,可以使搜索有效地跳出局部极小值点,更好地找到最优解.通过IEEE-14节点算例验证了该算法的有效性. 展开更多
关键词 无功优化 区域电网 改进Tabu搜索算法
在线阅读 下载PDF
地下空间异构无人系统分布式协同搜索路径规划方法
11
作者 詹浩 周同乐 +1 位作者 陈谋 杨家文 《哈尔滨工业大学学报》 北大核心 2026年第1期12-23,共12页
为解决地下空间中空地异构无人系统协同区域搜索效率低下的问题,本文综合考虑空中与地面障碍物的双重约束,构建了三维栅格地下空间模型。基于此,利用自适应高度的无人系统三维传感器模型,量化分析了探测距离对探测性能的影响,并采用信... 为解决地下空间中空地异构无人系统协同区域搜索效率低下的问题,本文综合考虑空中与地面障碍物的双重约束,构建了三维栅格地下空间模型。基于此,利用自适应高度的无人系统三维传感器模型,量化分析了探测距离对探测性能的影响,并采用信息素图机制,通过信息素的扩散与挥发动态更新环境信息。在分布式模型预测控制(distributed model predictive control,DMPC)框架下,融合差分变异、三角形游走、高斯扰动和t分布自适应扰动策略,提出了一种融合信息素图机制的改进人工旅鼠算法(improved artificial lemming algorithm-pheromone map,IDALA-PM),以实现多空地异构无人系统的分布式实时路径规划。仿真结果表明,所提出的IDALA-PM算法能够有效完成地下空间搜索任务,相比传统算法,搜索效率提高了54.2%。 展开更多
关键词 地下空间 空地异构无人系统 协同搜索路径规划 DMPC IDALA-PM
在线阅读 下载PDF
基于RLS系统辨识和改进模糊PID的纱线张力控制
12
作者 区卉贤 吴薇 《棉纺织技术》 2026年第1期21-27,共7页
为解决纺织生产过程中纱线张力波动的问题,提出了一种融合递推最小二乘法(RLS)系统辨识的改进模糊PID控制算法。首先,通过RLS算法对经纱系统的传递函数进行辨识,以解决经纱系统数学模型难以精确建立的问题;然后,采用改进麻雀搜索算法(IS... 为解决纺织生产过程中纱线张力波动的问题,提出了一种融合递推最小二乘法(RLS)系统辨识的改进模糊PID控制算法。首先,通过RLS算法对经纱系统的传递函数进行辨识,以解决经纱系统数学模型难以精确建立的问题;然后,采用改进麻雀搜索算法(ISSA)优化模糊PID控制器的模糊规则和隶属度函数,以提升系统的控制精度。试验结果表明:在纱线张力控制系统中,所提出的控制算法可在0.6 s内达到稳定的纱线张力,相较于传统模糊PID(FUZZY-PID)、遗传算法优化模糊PID(GA-FUZZY-PID)和麻雀搜索算法优化模糊PID(SSA-FUZZY-PID),分别缩短了0.8 s、0.1 s、0.3 s;此外,超调量相比FUZZY-PID和SSA-FUZZY-PID分别降低了0.33个百分点、0.27个百分点。认为:基于RLS辨识和ISSA优化的模糊PID控制算法能够有效改善纺织过程中纱线张力波动问题,提升系统的稳定性和动态响应。 展开更多
关键词 RLS系统辨识 改进麻雀搜索算法 模糊PID 张力控制 仿真试验
在线阅读 下载PDF
Application research of improved sparrow search strategy in multi-objective scheduling of cloud tasks
13
作者 Luo Zhiyong Yu Haixin +2 位作者 Teng Wenyao Jiang Hao Sun Guanglu 《The Journal of China Universities of Posts and Telecommunications》 2025年第3期46-59,114,共15页
In cloud computing, efficient multi-objective task scheduling, aiming at minimizing makespan, energy consumption,and load variance,remains a critical challenge due to the non-deterministic polynomial( NP)-completeness... In cloud computing, efficient multi-objective task scheduling, aiming at minimizing makespan, energy consumption,and load variance,remains a critical challenge due to the non-deterministic polynomial( NP)-completeness of the problem and the limitations of traditional algorithms like premature convergence. In this paper,a multi-strategy improved sparrow search algorithm( MISSA) was proposed to address these issues. MISSA integrates specular reflection learning for initial population optimization,nonlinear adaptive decay weights to balance global exploration and local exploitation,and an innovative strategy based on T-distribution mutation to enhance population diversity. Experimental results on benchmark functions and real cloud task scheduling scenarios using CloudSim demonstrate that MISSA outperforms comparative algorithms such as sparrow search algorithm( SSA),boosted sparrow search algorithm( BSSA),and genetic algorithm-grey wolf optimizer( GA-GWO),achieving significant reductions in makespan,energy consumption,and load variance. MISSA provides an effective solution for intelligent resource allocation in heterogeneous cloud environments,showcasing robust performance in complex multi-objective optimization tasks. 展开更多
关键词 cloud computing task scheduling MULTI-OBJECTIVE improved sparrow search algorithm
原文传递
Approach to WTA in air combat using IAFSA-IHS algorithm 被引量:12
14
作者 LI Zhanwu CHANG Yizhe +3 位作者 KOU Yingxin YANG Haiyan XU An LI You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期519-529,共11页
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ... In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem. 展开更多
关键词 air combat weapon target assignment improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) artificial fish swarm algorithm(AFSA) harmony search(HS)
在线阅读 下载PDF
The Objective Function Value Optimization of Cloud Computing Resources Security Allocation of Artificial Firefly Algorithm
15
作者 Xiaoxi Hu 《Open Journal of Optimization》 2015年第2期40-46,共7页
Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources secur... Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources security distribution model based on improved artificial firefly algorithm. First of all, according to characteristics of the artificial fireflies swarm algorithm and the complex method, it incorporates the ideas of complex method into the artificial firefly algorithm, uses the complex method to guide the search of artificial fireflies in population, and then introduces local search operator in the firefly mobile mechanism, in order to improve the searching efficiency and convergence precision of algorithm. Simulation results show that, the cloud computing resources security distribution model based on improved artificial firefly algorithm proposed in this paper has good convergence effect and optimum efficiency. 展开更多
关键词 Cloud Computing RESOURCES SECURITY Distribution improved Artificial FIREFLY algorithm Complex Method Local search OPERATOR
在线阅读 下载PDF
Optimised trajectory tracking control for quadrotors based on an improved beetle antennae search algorithm
16
作者 Zhe Lin Ping Li Zhaoqi Zhang 《Journal of Control and Decision》 EI 2023年第3期382-392,共11页
This paper focuses on the trajectory tracking of quadrotors under bounded external disturbances.An optimised robust controller is proposed to drive the position and attitude ofa quadrotor converge to their references ... This paper focuses on the trajectory tracking of quadrotors under bounded external disturbances.An optimised robust controller is proposed to drive the position and attitude ofa quadrotor converge to their references quickly. At first, nonsingular fast terminal slidingmode control is developed, which can guarantee not only the stability but also finite-timeconvergence of the closed-loop system. As the parameters of the designed controllers playa vital role for control performance, an improved beetle antennae search algorithm is proposedto optimise them. By employing the historical information of the beetle’s antennaeand dynamically updating the step size as well as the range of its searching, the optimisingis accelerated considerably to ensure the efficiency of the quadrotor control. The superiorityof the proposed control scheme is demonstrated by simulation experiments, from whichone can see that both the error and the overshooting of the trajectory tracking are reducedeffectively. 展开更多
关键词 Quadrotor control trajectory tracking nonsingular fast terminal sliding mode control optimisation improved beetle antennae search algorithm
原文传递
Research on Equivalent Modeling Method of AC-DC Power Networks Integrating with Renewable Energy Generation
17
作者 Weigang Jin Lei Chen +3 位作者 Yifei Li Shencong Zheng Yuqi Jiang Hongkun Chen 《Energy Engineering》 EI 2023年第11期2469-2487,共19页
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents... Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed. 展开更多
关键词 Equivalent modeling AC-DC power networks renewable energy generation wind farm improved chaotic cuckoo search algorithm
在线阅读 下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
18
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
基于SD-ISSA-DALSTM的交通运输业碳排放预测 被引量:2
19
作者 王庆荣 王俊杰 +1 位作者 朱昌锋 郝福乐 《华南理工大学学报(自然科学版)》 北大核心 2025年第5期66-81,共16页
针对交通运输业碳排放数据序列的波动性和非线性影响预测精度的问题,提出了一种结合二次分解、双重注意力机制、改进麻雀搜索算法(ISSA)和长短期记忆(LSTM)网络的交通运输业碳排放预测模型。首先,引入自适应噪声完备集合经验模态分解,... 针对交通运输业碳排放数据序列的波动性和非线性影响预测精度的问题,提出了一种结合二次分解、双重注意力机制、改进麻雀搜索算法(ISSA)和长短期记忆(LSTM)网络的交通运输业碳排放预测模型。首先,引入自适应噪声完备集合经验模态分解,将交通碳排放数据序列分解为不同频率的模态分量,再利用样本熵对各分量复杂度进行量化,并利用变分模态分解对熵值最高的分量进行二次分解,进一步弱化交通碳排放数据序列的波动性和非线性;然后,为挖掘交通碳排放量与其影响因素间的关联性,构建基于双重注意力机制优化的LSTM(DALSTM)模型,在LSTM模型的输入端嵌入特征注意力机制,突出关键输入特征;同时,在输出端嵌入时间注意力机制,提取关键历史时刻信息;最后,结合Circle混沌映射、动态惯性权重因子和混合变异算子策略改进SSA算法,并对各模态分量分别建立ISSA-DALSTM模型,接着对各模态分量预测值进行重构。用所测算的中国交通运输业1990—2019年碳排放数据来对模型进行验证,结果表明,所提模型的均方根误差、均方误差、平均绝对百分比误差分别为5.3088、3.5661、0.4439,均优于其他对比模型,验证了所提模型的有效性。 展开更多
关键词 交通运输业 碳排放预测 二次分解 双重注意力机制 改进麻雀搜索算法
在线阅读 下载PDF
基于改进麻雀搜索算法的直流电机调速优化与数字孪生实现 被引量:1
20
作者 毛海杰 赵楠 冯小林 《控制工程》 北大核心 2025年第10期1822-1832,共11页
针对传统直流电机调速方法在可靠性、智能化和调试效率等方面的不足,提出了一种改进麻雀搜索算法的直流电机调速优化方法,并将优化结果应用于基于数字孪生技术的虚拟调试中。首先,分别采用黄金正弦和柯西变异策略改进麻雀搜索算法中发... 针对传统直流电机调速方法在可靠性、智能化和调试效率等方面的不足,提出了一种改进麻雀搜索算法的直流电机调速优化方法,并将优化结果应用于基于数字孪生技术的虚拟调试中。首先,分别采用黄金正弦和柯西变异策略改进麻雀搜索算法中发现者和加入者的位置更新,以增加搜索的多样性和全局搜索能力;其次,将改进麻雀搜索算法应用于直流电机调速系统中,以优化转速环的比例积分(proportional integral,PI)控制器参数;最后,构建了直流电机调速系统的数字孪生模型,并基于OPC服务器实现了优化算法与数字孪生模型之间的交互。实验结果表明,改进麻雀搜索算法提高了直流电机调速系统的控制精度和鲁棒性;仿真得到的控制参数优化结果可以应用于数字孪生模型中,以提高直流电机的调试效率。 展开更多
关键词 改进麻雀搜索算法 直流电机调速 数字孪生 OPC通信
原文传递
上一页 1 2 38 下一页 到第
使用帮助 返回顶部