This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structu...This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structure,a double-layer Ag-Au metal film is combined with a blue phosphorene/transition metal dichalcogenide(BlueP/TMDC)hybrid structure and graphene.In the optimization function of the IABC method,the reflectivity at resonance angle is incorporated as a constraint to achieve high phase sensitivity.The performance of the Ag-Au-BlueP/TMDC-graphene heterostructure as optimized by the IABC method is compared with that of a similar structure optimized using the traditional ABC algorithm.The results indicate that optimization using the IABC method gives significantly more phase sensitivity,together with lower reflectivity,than can be achieved with the traditional ABC method.The highest phase sensitivity of 3.662×10^(6) °/RIU is achieved with a bilayer of BlueP/WS2 and three layers of graphene.Moreover,analysis of the electric field distribution demonstrates that the optimal arrangement can be utilized for enhanced detection of small biomolecules.Thus,given the exceptional sensitivity achieved,the proposed method based on the IABC algorithm has great promise for use in the design of high-performance SPR biosensors with a variety of multilayer structures.展开更多
The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very crit...The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.展开更多
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin...To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm.展开更多
Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources secur...Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources security distribution model based on improved artificial firefly algorithm. First of all, according to characteristics of the artificial fireflies swarm algorithm and the complex method, it incorporates the ideas of complex method into the artificial firefly algorithm, uses the complex method to guide the search of artificial fireflies in population, and then introduces local search operator in the firefly mobile mechanism, in order to improve the searching efficiency and convergence precision of algorithm. Simulation results show that, the cloud computing resources security distribution model based on improved artificial firefly algorithm proposed in this paper has good convergence effect and optimum efficiency.展开更多
To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are anal...To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.展开更多
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st...The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm展开更多
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ...In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.展开更多
An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(AB...An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(ABC)algorithm is herein developed and incorporated,with the results showing that a much higher computational efficiency can be achieved with the new model,while high computational accuracy can also be maintained.The improved ABC algorithm is thereafter utilised and combined with the random forest(RF)model,where four important hyper-parameters are optimized,for a tunnel deformation prediction.Results are thoroughly compared with those of other prediction methods based on machine learning(ML),as well as the monitored data on the site.Via the comparisons,the validity and effectiveness of the proposed model are fully demonstrated,and a more promising perspective can be seen of the method for its potential wide applications in geotechnical engineering.展开更多
针对城市场景下载人电动垂直起降飞行器(electric vertical takeoff and landing,eVTOL)路径规划问题进行了研究。首先,使用危险度栅格法进行三维城市空间建模,对选定型号的eVTOL飞行器,以航程、运行风险和高度变化为目标函数,结合飞行...针对城市场景下载人电动垂直起降飞行器(electric vertical takeoff and landing,eVTOL)路径规划问题进行了研究。首先,使用危险度栅格法进行三维城市空间建模,对选定型号的eVTOL飞行器,以航程、运行风险和高度变化为目标函数,结合飞行器自身特性及环境限制,构建了多约束条件的载人eVTOL路径规划模型。然后,设计了一种改进人工电场算法(im-proved artificial electric field algorithm,IAEFA),在传统人工电场算法(artificial electric field algorithm,AEFA)的基础上增加了自适应库伦参数,并在库伦常数的计算中引入递减系数,以此进行仿真求解。实验结果显示,所构建的模型可以达到预期效果。使用改进算法进行路径规划的求解效果更优,相较传统粒子群算法和人工电场法,航程更短,高度变化更小且运行更为安全。最后,根据对照实验确定递减系数的取值,当递减系数取值为1.5时,改进算法的求解效果最优。展开更多
In order to overcome the poor generalization ability and low accuracy of traditional network traffic prediction methods, a prediction method based on improved artificial bee colony (ABC) algorithm optimized error mi...In order to overcome the poor generalization ability and low accuracy of traditional network traffic prediction methods, a prediction method based on improved artificial bee colony (ABC) algorithm optimized error minimized extreme learning machine (EM-ELM) is proposed. EM-ELM has good generalization ability. But many useless neurons in EM-ELM have little influences on the final network output, and reduce the efficiency of the algorithm. Based on the EM-ELM, an improved ABC algorithm is introduced to optimize the parameters of the hidden layer nodes, decrease the number of useless neurons. Network complexity is reduced. The efficiency of the algorithm is improved. The stability and convergence property of the proposed prediction method are proved. The proposed prediction method is used in the prediction of network traffic. In the simulation, the actual collected network traffic is used as the research object. Compared with other prediction methods, the simulation results show that the proposed prediction method reduces the training time of the prediction model, decreases the number of hidden layer nodes. The proposed prediction method has higher prediction accuracy and reliable performance. At the same time, the performance indicators are improved.展开更多
针对传统频谱感知算法在复杂信道环境下鲁棒性欠佳的问题,以及深度学习感知算法面临的模型训练复杂度高等局限,提出了一种融合多种群人工鱼群算法与模糊孪生支持向量机(fuzzy twin support vector machine,FTSVM)的频谱感知方法.首先,...针对传统频谱感知算法在复杂信道环境下鲁棒性欠佳的问题,以及深度学习感知算法面临的模型训练复杂度高等局限,提出了一种融合多种群人工鱼群算法与模糊孪生支持向量机(fuzzy twin support vector machine,FTSVM)的频谱感知方法.首先,通过计算接收信号协方差矩阵的迹及其对角线外元素的均值,构建一个二维特征向量,由FTSVM进行训练识别;然后,使用样本的模糊隶属度调整了FTSVM超平面,从而使训练得到的模型更倾向于识别出初级用户存在的信号;最后,设计了多种群机制的改进人工鱼群算法,对频谱感知模型参数进行优化.仿真实验结果表明,在面临小样本数据集和低信噪比环境时,所提方法相较于其它的特征提取和SVM方法,在模型感知性能上实现了有效提升,−20 dB信噪比下检测概率达0.7以上.同时,优化算法的多种群机制缩短了模型的训练时间,相较于改进人工鱼群算法,训练时间缩短了约81%.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.52375547)the Natural Science Foundation of Chongqing,China(Grant Nos.CSTB2022NSCQ-BHX0736 and CSTB2022NSCQ-MSX1523)the Chongqing Scientific Institution Incentive Performance Guiding Special Projects(Grant No.CSTB2024JXJL-YFX0034).
文摘This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structure,a double-layer Ag-Au metal film is combined with a blue phosphorene/transition metal dichalcogenide(BlueP/TMDC)hybrid structure and graphene.In the optimization function of the IABC method,the reflectivity at resonance angle is incorporated as a constraint to achieve high phase sensitivity.The performance of the Ag-Au-BlueP/TMDC-graphene heterostructure as optimized by the IABC method is compared with that of a similar structure optimized using the traditional ABC algorithm.The results indicate that optimization using the IABC method gives significantly more phase sensitivity,together with lower reflectivity,than can be achieved with the traditional ABC method.The highest phase sensitivity of 3.662×10^(6) °/RIU is achieved with a bilayer of BlueP/WS2 and three layers of graphene.Moreover,analysis of the electric field distribution demonstrates that the optimal arrangement can be utilized for enhanced detection of small biomolecules.Thus,given the exceptional sensitivity achieved,the proposed method based on the IABC algorithm has great promise for use in the design of high-performance SPR biosensors with a variety of multilayer structures.
基金National Nature Science Foundation of China,Grant/Award Number:U1813201the Key Scientific Research Projects of Henan Province,Grant/Award Number:22A413011+2 种基金the Training Program for Young Teachers in Universities of Henan Province,Grant/Award Number:2020GGJS137Henan Province Science and Technology R&D projects,Grant/Award Number:202102210135,212102310547 and 212102210080High‐end foreign expert program of Ministry of Science and Technology,Grant/Award Number:G2021026006L。
文摘The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.
基金Sponsored by Beijing Priority Laboratory Fund of China(SYS10070522)
文摘To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm.
文摘Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources security distribution model based on improved artificial firefly algorithm. First of all, according to characteristics of the artificial fireflies swarm algorithm and the complex method, it incorporates the ideas of complex method into the artificial firefly algorithm, uses the complex method to guide the search of artificial fireflies in population, and then introduces local search operator in the firefly mobile mechanism, in order to improve the searching efficiency and convergence precision of algorithm. Simulation results show that, the cloud computing resources security distribution model based on improved artificial firefly algorithm proposed in this paper has good convergence effect and optimum efficiency.
文摘To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.
文摘The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm
基金supported by the National Natural Science Foundation of China(61472441)
文摘In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52178386,51808193,and 51979270).
文摘An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(ABC)algorithm is herein developed and incorporated,with the results showing that a much higher computational efficiency can be achieved with the new model,while high computational accuracy can also be maintained.The improved ABC algorithm is thereafter utilised and combined with the random forest(RF)model,where four important hyper-parameters are optimized,for a tunnel deformation prediction.Results are thoroughly compared with those of other prediction methods based on machine learning(ML),as well as the monitored data on the site.Via the comparisons,the validity and effectiveness of the proposed model are fully demonstrated,and a more promising perspective can be seen of the method for its potential wide applications in geotechnical engineering.
文摘针对城市场景下载人电动垂直起降飞行器(electric vertical takeoff and landing,eVTOL)路径规划问题进行了研究。首先,使用危险度栅格法进行三维城市空间建模,对选定型号的eVTOL飞行器,以航程、运行风险和高度变化为目标函数,结合飞行器自身特性及环境限制,构建了多约束条件的载人eVTOL路径规划模型。然后,设计了一种改进人工电场算法(im-proved artificial electric field algorithm,IAEFA),在传统人工电场算法(artificial electric field algorithm,AEFA)的基础上增加了自适应库伦参数,并在库伦常数的计算中引入递减系数,以此进行仿真求解。实验结果显示,所构建的模型可以达到预期效果。使用改进算法进行路径规划的求解效果更优,相较传统粒子群算法和人工电场法,航程更短,高度变化更小且运行更为安全。最后,根据对照实验确定递减系数的取值,当递减系数取值为1.5时,改进算法的求解效果最优。
基金supported by the Science Research Project of Liaoning Education Department (LGD2016009)the Natural Science Foundation of Liaoning Province of China (20170540686)the State Key Program of Basic Research of China (2016YFD0700104-02)
文摘In order to overcome the poor generalization ability and low accuracy of traditional network traffic prediction methods, a prediction method based on improved artificial bee colony (ABC) algorithm optimized error minimized extreme learning machine (EM-ELM) is proposed. EM-ELM has good generalization ability. But many useless neurons in EM-ELM have little influences on the final network output, and reduce the efficiency of the algorithm. Based on the EM-ELM, an improved ABC algorithm is introduced to optimize the parameters of the hidden layer nodes, decrease the number of useless neurons. Network complexity is reduced. The efficiency of the algorithm is improved. The stability and convergence property of the proposed prediction method are proved. The proposed prediction method is used in the prediction of network traffic. In the simulation, the actual collected network traffic is used as the research object. Compared with other prediction methods, the simulation results show that the proposed prediction method reduces the training time of the prediction model, decreases the number of hidden layer nodes. The proposed prediction method has higher prediction accuracy and reliable performance. At the same time, the performance indicators are improved.