针对5G通信基站负载预测精度不足与能耗过高的问题,研究提出将深度学习与改进灰狼优化(Grey Wolf Optimizer,GWO)算法相结合的方法。通过构建基于生成对抗网络(Generative Adversarial Network,GAN)的负载预测模型,利用改进GWO算法优化...针对5G通信基站负载预测精度不足与能耗过高的问题,研究提出将深度学习与改进灰狼优化(Grey Wolf Optimizer,GWO)算法相结合的方法。通过构建基于生成对抗网络(Generative Adversarial Network,GAN)的负载预测模型,利用改进GWO算法优化网络参数,并设计智能节能控制策略。实验结果表明,该模型短期误差均值为0.015,长期误差均值为0.052,均低于对比模型。在节能控制方面,实验组低负载平均功率为35.2 W,较对照组显著降低,且通信质量无明显下降。研究表明,该方法有效提升了负载预测准确性,降低了基站能耗,为5G基站高效运营提供了可行方案。展开更多