In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two ...In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two nonlinear schemes and two linearized schemes are presented. All resulting schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities are used to highlight the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be also conducted. The numerical results show that the interaction behavior is elastic and the conserved quantities are conserved exactly, and this is a good indication of the reliability of the schemes which we derived. A comparison with some existing is presented as well.展开更多
The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part o...The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.展开更多
A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segme...A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.展开更多
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed fro...A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.展开更多
A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative metho...A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative method for the resulting discrete problem is presented. The sequence of iteration converges monotonically to the unique solution of the discrete problem, and the convergence rate is either quadratic or nearly quadratic, depending on the property of the nonlinear reaction. The numerical results illustrate the high accuracy of the proposed scheme and the rapid convergence rate of.the iteration.展开更多
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim...Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.展开更多
In this paper, an implicit scheme (also called the θ method) was proposed for the Lattice Bhatager-Gross-Krook (LBGK) model simulating incompressible flows. The new parameter θ made the model more flexible. Through ...In this paper, an implicit scheme (also called the θ method) was proposed for the Lattice Bhatager-Gross-Krook (LBGK) model simulating incompressible flows. The new parameter θ made the model more flexible. Through the Chapman-Enskog procedure the impressible Navie-Stokes equations could be recovered with the coupled kinetic viscosity. Boundary conditions were treated briefly and it kept the numerical accuracy of the Lattice Boltzmann Method (LBM). The two-dimensional Poiseuille flow was simulated with different values of the parameters. It is found that the numerical accuracy and stability of the implicit scheme can be improved if some adaptable parameters are chosen.展开更多
Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme...Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency.展开更多
Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly im...Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.展开更多
We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equati...We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equation (image selective smoothing model) given by Alvarez et al. (Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal., 1992, 29: 845-866). Through the reasonable semi-implicit discretization in time and co-volume method for space approximation, we give finite volume schemes, unconditionally stable in L∞ and W1'2 (W1'1) sense in isotropic (anisotropic) diffu- sion domain.展开更多
High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discont...High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discontinuous Galerkin(DG) method for solving the 3D compressible Euler and Navier-Stokes equations. In this method, a fine linear mesh is first generated by standard commercial mesh generation tools. By taking advantage of an agglomeration method, a quadratic high-order mesh is quickly obtained, which is coarse but provides a high-quality geometry representation, thus very suitable for high-order computations. High-order discretizations are performed on the obtained grids with DG method and the discretized system is treated fully implicitly to obtain steady state solutions. Numerical experiments on several flow problems indicate that the agglomerated high-order mesh works well with DG method in dealing with flow problems of curved geometries. It is also found that with a fully implicit discretized system and a p-sequencing method, the DG method can achieve convergence state within several time steps which shows significant efficiency improvements compared to its explicit counterparts.展开更多
The key problem in the computation of fluid dynamics using fine boundary-fitted grids is how to improve the numerical stability and decrease the calculating quantity. To solve this problem, implicit schemes should be ...The key problem in the computation of fluid dynamics using fine boundary-fitted grids is how to improve the numerical stability and decrease the calculating quantity. To solve this problem, implicit schemes should be adopted since explicit schemes may bring about a great increase in computation quantity according to the Courant-FrledrichsLewy condition. Whereas the adoption of implicit schemes is difficult to be realized because of the existence of two partial derivatives of surface elevations with respect to variables of alternative direction coordinates in each momentum equation in non-rectangular coordinates. With an aim to design an implicit scheme in non-reetangular ccordinates in the present paper, new momentum equations with the contravariant components of velocity vector are derived based on the shallow water dynamic equations in generalized curvilinear coordinates. In each equation, the coefficients before the two detivatives of surface elevations have different orders of magnitude, i. e., the derivative with the larger ceefficient rnay play a more important role than that with the smaller one. With this advantage, the ADI scheme can then be easily employed to improve the numerical stability and decrease the calculating quantity. The calculation in a harbour and a channel in Macau nearshore area shows that the implicit model is effective in calculating current fields in small size areas.展开更多
高温气冷堆螺旋管蒸汽发生器两侧的运行工质分别为氦气和水,两者物性差异大,瞬态响应时间不同,用传统半隐数值求解方法开发得到的热工安全程序往往会因为库朗特准则而降低时间步长,从而降低蒸汽发生器热工水力程序的计算效率。本文以高...高温气冷堆螺旋管蒸汽发生器两侧的运行工质分别为氦气和水,两者物性差异大,瞬态响应时间不同,用传统半隐数值求解方法开发得到的热工安全程序往往会因为库朗特准则而降低时间步长,从而降低蒸汽发生器热工水力程序的计算效率。本文以高温气冷堆螺旋管蒸汽发生器为研究对象,以均相流水力学模型为基础,采用对流-扩散项全隐差分格式算法求解基本守恒方程,采用流热全耦合算法求解传热管的导热过程,开发了全新的高温气冷堆螺旋管蒸汽发生器瞬态分析程序NUSOL-HTGRSG。采用球床模块式高温气冷堆(High Temperature Reactor-Pebble bed Modules,HTR-PM)蒸汽发生器的设计工况和经过验证的螺旋管直流式蒸汽发生器热工水力分析程序NUSOL-SG的瞬态计算结果开展了稳瞬态的验证。稳态计算结果表明:一次侧、二次侧出口温度及两侧压降误差基本小于1%。瞬态计算结果表明:相同工况下,两个程序的瞬态响应结果的最大相对偏差为1.4%。验证结果表明:NUSOL-HTGRSG程序能够有效预测高温气冷堆中螺旋管蒸汽发生器在稳态工况下的运行参数,并且能以较大时间步长(5 s)准确预测其瞬态特性。展开更多
Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit ap...Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit approach is a severe restriction on the time step size for maintaining numerical stability. An implicit immersed boundary method in two dimensions using the lattice Boltzmann approach has been proposed. This paper reports an extension of the method to three dimensions and its application to simulation of a massive flexible sheet interacting with an incompressible viscous flow.展开更多
Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Im...Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Implicit integration is quite straightforward for first-order schemes.High order schemes instead also need to control spurious oscillations,which requires limiting in space and time also in the linear case.We propose a framework to simplify considerably the application of high order non-oscillatory schemes through the introduction of a low order implicit predictor,which is used both to set up the nonlinear weights of a standard high order space reconstruction,and to achieve limiting in time.In this preliminary work,we concentrate on the case of a third-order scheme,based on diagonally implicit Runge Kutta(DIRK)integration in time and central weighted essentially non-oscillatory(CWENO)reconstruction in space.The numerical tests involve linear and nonlinear scalar conservation laws.展开更多
文摘In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two nonlinear schemes and two linearized schemes are presented. All resulting schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities are used to highlight the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be also conducted. The numerical results show that the interaction behavior is elastic and the conserved quantities are conserved exactly, and this is a good indication of the reliability of the schemes which we derived. A comparison with some existing is presented as well.
文摘The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.
基金Project supported by the National Natural Science Foundation of China(No.10671113)the Natural Science Foundation of Shandong Province of China(No.Y2003A04)
文摘A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.
基金supported by the National Natural Science Foundation of China(11602091 and 91530319)the National Key Research and Development Plan(2016YFB0600805)
文摘A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.
基金supported in part by NSF of China No.10571059E-Institutes of Shanghai Municipal Education Commission No.E03004+4 种基金Shanghai Priority Academic Discipline,and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education MinistrySF of Shanghai No.04JC14062the fund of Chinese Education Ministry No.20040270002the Shanghai Leading Academic Discipline Project No.T0401the fund for E-Institutes of Shanghai Municipal Education Commission No.E03004 and the fund No.04DB15 of Shanghai Municipal Education Commission
文摘A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative method for the resulting discrete problem is presented. The sequence of iteration converges monotonically to the unique solution of the discrete problem, and the convergence rate is either quadratic or nearly quadratic, depending on the property of the nonlinear reaction. The numerical results illustrate the high accuracy of the proposed scheme and the rapid convergence rate of.the iteration.
基金Supported by the Discipline Construction and Teaching Research Fund of LUTcte(20140089)
文摘Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.
文摘In this paper, an implicit scheme (also called the θ method) was proposed for the Lattice Bhatager-Gross-Krook (LBGK) model simulating incompressible flows. The new parameter θ made the model more flexible. Through the Chapman-Enskog procedure the impressible Navie-Stokes equations could be recovered with the coupled kinetic viscosity. Boundary conditions were treated briefly and it kept the numerical accuracy of the Lattice Boltzmann Method (LBM). The two-dimensional Poiseuille flow was simulated with different values of the parameters. It is found that the numerical accuracy and stability of the implicit scheme can be improved if some adaptable parameters are chosen.
文摘Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency.
文摘Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.
文摘We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equation (image selective smoothing model) given by Alvarez et al. (Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal., 1992, 29: 845-866). Through the reasonable semi-implicit discretization in time and co-volume method for space approximation, we give finite volume schemes, unconditionally stable in L∞ and W1'2 (W1'1) sense in isotropic (anisotropic) diffu- sion domain.
基金co-supported by the Aeronautical Science Foundation of China (No. 20152752033)the National Natural Science Foundation of China (No. 11272152)the Open Project of Key Laboratory of Aerodynamic Noise Control
文摘High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discontinuous Galerkin(DG) method for solving the 3D compressible Euler and Navier-Stokes equations. In this method, a fine linear mesh is first generated by standard commercial mesh generation tools. By taking advantage of an agglomeration method, a quadratic high-order mesh is quickly obtained, which is coarse but provides a high-quality geometry representation, thus very suitable for high-order computations. High-order discretizations are performed on the obtained grids with DG method and the discretized system is treated fully implicitly to obtain steady state solutions. Numerical experiments on several flow problems indicate that the agglomerated high-order mesh works well with DG method in dealing with flow problems of curved geometries. It is also found that with a fully implicit discretized system and a p-sequencing method, the DG method can achieve convergence state within several time steps which shows significant efficiency improvements compared to its explicit counterparts.
文摘The key problem in the computation of fluid dynamics using fine boundary-fitted grids is how to improve the numerical stability and decrease the calculating quantity. To solve this problem, implicit schemes should be adopted since explicit schemes may bring about a great increase in computation quantity according to the Courant-FrledrichsLewy condition. Whereas the adoption of implicit schemes is difficult to be realized because of the existence of two partial derivatives of surface elevations with respect to variables of alternative direction coordinates in each momentum equation in non-rectangular coordinates. With an aim to design an implicit scheme in non-reetangular ccordinates in the present paper, new momentum equations with the contravariant components of velocity vector are derived based on the shallow water dynamic equations in generalized curvilinear coordinates. In each equation, the coefficients before the two detivatives of surface elevations have different orders of magnitude, i. e., the derivative with the larger ceefficient rnay play a more important role than that with the smaller one. With this advantage, the ADI scheme can then be easily employed to improve the numerical stability and decrease the calculating quantity. The calculation in a harbour and a channel in Macau nearshore area shows that the implicit model is effective in calculating current fields in small size areas.
文摘高温气冷堆螺旋管蒸汽发生器两侧的运行工质分别为氦气和水,两者物性差异大,瞬态响应时间不同,用传统半隐数值求解方法开发得到的热工安全程序往往会因为库朗特准则而降低时间步长,从而降低蒸汽发生器热工水力程序的计算效率。本文以高温气冷堆螺旋管蒸汽发生器为研究对象,以均相流水力学模型为基础,采用对流-扩散项全隐差分格式算法求解基本守恒方程,采用流热全耦合算法求解传热管的导热过程,开发了全新的高温气冷堆螺旋管蒸汽发生器瞬态分析程序NUSOL-HTGRSG。采用球床模块式高温气冷堆(High Temperature Reactor-Pebble bed Modules,HTR-PM)蒸汽发生器的设计工况和经过验证的螺旋管直流式蒸汽发生器热工水力分析程序NUSOL-SG的瞬态计算结果开展了稳瞬态的验证。稳态计算结果表明:一次侧、二次侧出口温度及两侧压降误差基本小于1%。瞬态计算结果表明:相同工况下,两个程序的瞬态响应结果的最大相对偏差为1.4%。验证结果表明:NUSOL-HTGRSG程序能够有效预测高温气冷堆中螺旋管蒸汽发生器在稳态工况下的运行参数,并且能以较大时间步长(5 s)准确预测其瞬态特性。
基金supported by the US National Science Foundation (DMS-0713718)
文摘Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit approach is a severe restriction on the time step size for maintaining numerical stability. An implicit immersed boundary method in two dimensions using the lattice Boltzmann approach has been proposed. This paper reports an extension of the method to three dimensions and its application to simulation of a massive flexible sheet interacting with an incompressible viscous flow.
基金MIUR(Ministry of University and Research)PRIN2017 project number 2017KKJP4XProgetto di Ateneo Sapienza,number RM120172B41DBF3A.
文摘Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Implicit integration is quite straightforward for first-order schemes.High order schemes instead also need to control spurious oscillations,which requires limiting in space and time also in the linear case.We propose a framework to simplify considerably the application of high order non-oscillatory schemes through the introduction of a low order implicit predictor,which is used both to set up the nonlinear weights of a standard high order space reconstruction,and to achieve limiting in time.In this preliminary work,we concentrate on the case of a third-order scheme,based on diagonally implicit Runge Kutta(DIRK)integration in time and central weighted essentially non-oscillatory(CWENO)reconstruction in space.The numerical tests involve linear and nonlinear scalar conservation laws.