期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Knowledge-enriched joint-learning model for implicit emotion cause extraction
1
作者 Chenghao Wu Shumin Shi +1 位作者 Jiaxing Hu Heyan Huang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期118-128,共11页
Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without an... Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without any explicit emotional keywords,which appears more frequently in application scenarios.The lack of explicit emotion information makes it extremely hard to extract emotion causes only with the local context.Moreover,an entire event is usually across multiple clauses,while existing work merely extracts cause events at clause level and cannot effectively capture complete cause event information.To address these issues,the events are first redefined at the tuple level and a span-based tuple-level algorithm is proposed to extract events from different clauses.Based on it,a corpus for implicit emotion cause extraction that tries to extract causes of implicit emotions is constructed.The authors propose a knowledge-enriched jointlearning model of implicit emotion recognition and implicit emotion cause extraction tasks(KJ-IECE),which leverages commonsense knowledge from ConceptNet and NRC_VAD to better capture connections between emotion and corresponding cause events.Experiments on both implicit and explicit emotion cause extraction datasets demonstrate the effectiveness of the proposed model. 展开更多
关键词 emotion cause extraction external knowledge fusion implicit emotion recognition joint learning
在线阅读 下载PDF
Cross-lingual implicit discourse relation recognition with co-training 被引量:2
2
作者 Yao-jie LU Mu XU +3 位作者 Chang-xing WU De-yi XIONG Hong-ji WANG Jin-song SU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第5期651-661,共11页
A lack of labeled corpora obstructs the research progress on implicit discourse relation recognition (DRR) for Chinese, while there are some available discourse corpora in other languages, such as English. In this p... A lack of labeled corpora obstructs the research progress on implicit discourse relation recognition (DRR) for Chinese, while there are some available discourse corpora in other languages, such as English. In this paper, we propose a cross-lingual implicit DRR framework that exploits an available English corpus for the Chinese DRR task. We use machine translation to generate Chinese instances from a labeled English discourse corpus. In this way, each instance has two independent views: Chinese and English views. Then we train two classifiers in Chinese and English in a co-training way, which exploits unlabeled Chinese data to implement better implicit DRR for Chinese. Experimental results demonstrate the effectiveness of our method. 展开更多
关键词 Cross-lingual implicit discourse relation recognition CO-TRAINING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部