期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Implantable optical fiber microelectrode with anti-biofouling ability for in vivo photoelectrochemical analysis 被引量:1
1
作者 Lixia Tao Yao Kong +3 位作者 Yunhui Xiang Yu Cao Xiaoxue Ye Zhihong Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期259-263,共5页
In-situ monitoring of neurochemicals is of vital importance for the understanding of brain functions.Microelectrode-based photoelectrochemical(PEC) sensing has emerged as a promising tool for in vivo analysis since it... In-situ monitoring of neurochemicals is of vital importance for the understanding of brain functions.Microelectrode-based photoelectrochemical(PEC) sensing has emerged as a promising tool for in vivo analysis since it inherits the merits of both optical and electrochemical methods. However, the in-situ excitation of photoactive materials on the photoelectrode in living body is still a challenge because of limited tissue penetration depth of light. To circumvent this problem, we herein developed an implantable optical fiber(OF)-based microelectrode for in vivo PEC analysis. The working electrode was constructed by coating Au film as conducting layer and CdS@ZnO as photoactive material on a micron-sized OF,which was free of the limitation of light penetration in biological tissues. Further decoration of an antibiofouling layer on the surface made the sensor robust in biosamples. It was successfully applied for monitoring Cu^(2+) level in three different brain regions in the rat model of cerebral ischemia/reperfusion. 展开更多
关键词 Optical fiber Implantable microelectrode Photoelectrochemical sensing In vivo analysis Neurochemicals
原文传递
Deep brain implantable microelectrode arrays for detection and functional localization of the subthalamic nucleus in rats with Parkinson’s disease 被引量:1
2
作者 Luyi Jing Zhaojie Xu +11 位作者 Penghui Fan Botao Lu Fan Mo Ruilin Hu Wei Xu Jin Shan Qianli Jia Yuxin Zhu Yiming Duan Mixia Wang Yirong Wu Xinxia Cai 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期439-452,共14页
The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr... The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei. 展开更多
关键词 Functional localization Implantable microelectrode arrays Parkinson’s disease Subthalamic nucleus
在线阅读 下载PDF
Quantitative features of myoelectric signals in the orbicularis oculi muscle during different motion states 被引量:6
3
作者 Dongyue Xu Keyong Li +2 位作者 Jingquan Liu Yujuan Wang Yuefeng Rui 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第24期1895-1899,共5页
Artificial facial nerve prostheses are thought to restore eye-closed function in peripheral facial paralysis patients.At present,however,there is no adequate quantitative or qualitative information regarding myoelectr... Artificial facial nerve prostheses are thought to restore eye-closed function in peripheral facial paralysis patients.At present,however,there is no adequate quantitative or qualitative information regarding myoelectric signal(MES)features for healthy orbiculads oculi muscle(OOM).The present study analyzed MES features of normal OOM in rabbits during the natural continuous eye-opening(N1)state,natural continuous eye-closing(N2)state,natural blink(N3)state,and evoked eye-closing(E)state according to time domain and frequency domain analysis.Results showed that OOM electrical activities in N1 and N2 states,as well as myoelectric amplitude,were low and stable.Nevertheless,during N3 and E states,OOM electrical activities were significantly increased and amplitude was much higher in the E state than in the N3 state.In the time domain,differences in MES peak absolute potential were not significant between N1 and N2 states,in the frequency domain,differences in power spectral density peak frequency of electromyogram signals were significant between two sets of four OOM movement states.These results suggest that OOM significantly contracts and induces eyelid-closing action.In addition,OOM is diastolic during the N1state.A N2 state does not require continuous intensive OOM contraction.Moreover,distinctions of quantitative information in time and frequency domain features of MES can be used as an OOM reference to identify muscle movement patterns. 展开更多
关键词 orbicularis oculi muscle myoelectric signal ELECTROMYOGRAPHY implanted microelectrode power spectral density nerve electrophysiology
在线阅读 下载PDF
Detection of electrophysiological activities in the F7 area of the rhesus macaque cortex during recovery from prolonged anesthesia using implantable microelectrode array
4
作者 Wei Xu Jinping Luo +12 位作者 Jin Shan Yaoyao Liu Shiya Lv Ming Li Peiyao Jiao Siyu Zhang Luyi Jing Zhaojie Xu Di Zang Mixia Wang Yanbing Yu Yilin Song Xinxia Cai 《Nanotechnology and Precision Engineering》 2025年第4期143-152,共10页
Anesthesia plays a crucial role in regulating physiological states during medical procedures,but its effects on neural activity remain incompletely understood,particularly at the prefrontal cortical level.The prefront... Anesthesia plays a crucial role in regulating physiological states during medical procedures,but its effects on neural activity remain incompletely understood,particularly at the prefrontal cortical level.The prefrontal cortex is essential for various cognitive and motor functions,yet high-spatiotemporal-resolution electrodes at the cellular level remain challenging to develop,which has hindered the acquisition of detailed electrophysiological data from anesthetized subjects.Here,we design a 16-channel silicon-based microelectrode array(MEA),which,after modification with platinum black nanoparticles,exhibits significantly reduced impedance(22.5 kΩ)and increased phase(−33.5°),enhancing its electrical performance and electrophysiological signal detection capabilities.Using this modified MEA,we have recorded cellular-level neural activity during the recovery process of a rhesus macaque following prolonged anesthesia.Over a 660 s period,we observed a gradual increase in the neuronal firing rate in the F7 area,along with distinctive patterns in local field potentials across different frequency bands.Notably,power in the δ and θ bands increased continuously during recovery,highlighting their potential role in the transition from anesthesia to wakefulness.Our findings provide new insights into the dynamic recovery process of cortical neurons and offer a powerful tool for high-spatiotemporal-resolution neural monitoring in nonhuman primates. 展开更多
关键词 Implantable microelectrode array Nonhuman primate Anesthesia recovery prefrontal cortex F7 area
暂未订购
An implantable microelectrode array for simultaneous L-glutamate and electrophysiological recordings in vivo 被引量:5
5
作者 Wenjing Wei Yilin Song +4 位作者 Li Wang Song Zhang Jinping Luo Shengwei Xu Xinxia Cai 《Microsystems & Nanoengineering》 EI 2015年第1期159-164,共6页
L-glutamate,the most common excitatory neurotransmitter in the mammalian central nervous system(CNS),is associated with a wide range of neurological diseases.Because neurons in CNS communicate with each other both ele... L-glutamate,the most common excitatory neurotransmitter in the mammalian central nervous system(CNS),is associated with a wide range of neurological diseases.Because neurons in CNS communicate with each other both electrically and chemically,dualmode(electric and chemical)analytical techniques with high spatiotemporal resolution are required to better understand glutamate function in vivo.In the present study,a silicon-based implantable microelectrode array(MEA)composed of both platinum electrochemical and electrophysiological microelectrodes was fabricated using micro-electromechanical system.In the MEA probe,the electrophysiological electrodes have a low impedance of 0.018 MΩat 1 kHz,and the electrochemical electrodes show a sensitivity of 56 pAμM^(−1) to glutamate and have a detection limit of 0.5μM.The MEA probe was used to monitor extracellular glutamate levels,spikes and local field potentials(LFPs)in the striatum of anaesthetised rats.To explore the potential of the MEA probe,the rats were administered to KCl via intraperitoneal injection.K+significantly increases extracellular glutamate levels,LFP low-beta range(12–18 Hz)power and spike firing rates with a similar temporal profile,indicating that the MEA probe is capable of detecting dual-mode neuronal signals.It was concluded that the MEA probe can help reveal mechanisms of neural physiology and pathology in vivo. 展开更多
关键词 MEMS implantable microelectrode array GLUTAMATE electrophysiological detection in vivo
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部