Accurate characterization of high-power laser parameters,especially the near-field and far-field distributions,is crucial for inertial confinement fusion experiments.In this paper,we propose a method for computational...Accurate characterization of high-power laser parameters,especially the near-field and far-field distributions,is crucial for inertial confinement fusion experiments.In this paper,we propose a method for computationally reconstructing the complex amplitude of high-power laser beams using modified coherent modulation imaging.This method has the advantage of being able to simultaneously calculate both the near-field(intensity and wavefront/phase)and far-field(focal-spot)distributions using the reconstructed complex amplitude.More importantly,the focal-spot distributions at different focal planes can also be calculated.To verify the feasibility,the complex amplitude optical field of the highpower pulsed laser was measured after static aberrations calibration.Experimental results also indicate that the near-field wavefront resolution of this method is higher than that of the Hartmann measurement.In addition,the far-field focal spot exhibits a higher dynamic range(176 dB)than that of traditional direct imaging(62 dB).展开更多
A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels c...A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.展开更多
A simple and effective approach is proposed to minimize the effect of unmodulated light and uneven intensity caused by the pixelated structure of the spatial light modulator in a holographic display. A more uniform im...A simple and effective approach is proposed to minimize the effect of unmodulated light and uneven intensity caused by the pixelated structure of the spatial light modulator in a holographic display. A more uniform image is produced by purposely shifting the holographic images of multiple reconstructed lights with different incident angles from the zero-diffraction-order and overlapping those selected different orders. The simulation and optical experimental results show that the influence of the zero-diffraction-order can be reduced, while keeping the good uniformity of the target images by this new approach.展开更多
基金supported by the Project of the Ministry of Industry and Information Technology(Grant No.TC220H05L)the National Natural Science Foundation of China(NSFC)(Grant Nos.61905261,61827816 and 11875308)+1 种基金the Shanghai Sailing Program(Grant No.18YF1426600)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25020306).
文摘Accurate characterization of high-power laser parameters,especially the near-field and far-field distributions,is crucial for inertial confinement fusion experiments.In this paper,we propose a method for computationally reconstructing the complex amplitude of high-power laser beams using modified coherent modulation imaging.This method has the advantage of being able to simultaneously calculate both the near-field(intensity and wavefront/phase)and far-field(focal-spot)distributions using the reconstructed complex amplitude.More importantly,the focal-spot distributions at different focal planes can also be calculated.To verify the feasibility,the complex amplitude optical field of the highpower pulsed laser was measured after static aberrations calibration.Experimental results also indicate that the near-field wavefront resolution of this method is higher than that of the Hartmann measurement.In addition,the far-field focal spot exhibits a higher dynamic range(176 dB)than that of traditional direct imaging(62 dB).
基金Project supported by the National Natural Science Foundation of China(Grant No.61307020)Beijing Natural Science Foundation(Grant No.4172038)the Qingdao Opto-electronic United Foundation,China
文摘A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.
基金supported by the UK Engineering and Physical Sciences Research Council(EPSRC) for the support through the EPSRC Centre for Innovative Manufacturing in Ultra Precision(EP/I033491/1)
文摘A simple and effective approach is proposed to minimize the effect of unmodulated light and uneven intensity caused by the pixelated structure of the spatial light modulator in a holographic display. A more uniform image is produced by purposely shifting the holographic images of multiple reconstructed lights with different incident angles from the zero-diffraction-order and overlapping those selected different orders. The simulation and optical experimental results show that the influence of the zero-diffraction-order can be reduced, while keeping the good uniformity of the target images by this new approach.