The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean...The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean. This system can suit to the climate environment of very high temperature high moisture and very low temperature - supersaturation; it has a self-protection ability to against the hurricane - force wind over force 12 and the strong vibration during icebreaking, as well as strong magnetic disturbance. It has two sets of receiving-imagery processing systems for polar orbit low-resolution and quasi-stationary high-solution satellites. The key creation Points of this system are as follows: 1. the active gyro-control stabilization platform and a mixed mounting system of three rotating a - B and x -- y axes are used. It solved the tracing difficulties both in the low elevation angle and very high elevation angle of polar-orbit satellite, even in the status of ship moving with continuously changing its poition, direction and ship roll and pitch. 2. Imagery processing subsystem. The newest BORLAND-- DELPHI language and PASCAL language pro gramming software are used under WINDOWS 95 environment. It has a dynamic positioning nested-grid system and electric mapping grid data system. It can show the latitude-longitude of any point on the map, and marks any object such as ship, station or island, and draws the route. It can monitor cloud and temperature, forest fire, anomalous change of ocean and land. It can output satellite cloud maps of 24 bit with very high clarity. This system is very advanced in technique for the whole structure with the features of small volume, light weight and very low cost. It suits to very bad climate and ocean environment. Its imagery process ing system has complete functions with high resolution and being very easy to operate. It is not only suit to land use, but also and specially to all kinds of ship over the sea. It can be extended to domestic and international use. This system played a very important role in the 14th Chinese Antarctic Exploration Navigation, and was introduced a broad attention paid by Chinese newspapers and TV Stations.展开更多
Due to the volume conduction,electroencephalogram(EEG) gives a rather blurred image of brain activities. It is a challenge for generating satisfactory performance with EEG. This paper studies the multiple areas fusi...Due to the volume conduction,electroencephalogram(EEG) gives a rather blurred image of brain activities. It is a challenge for generating satisfactory performance with EEG. This paper studies the multiple areas fusion of EEG classifiers to improve the motor imagery EEG classification performance. Two feature extraction methods are employed to extract the feature from three different areas of EEG. One is power spectral density(PSD), and the other is common spatial patterns(CSP). Classifiers are designed based on the well-known linear discrimination analysis(LDA). The fusion of the individual classifiers is realized by means of the Choquet fuzzy integral. It is demonstrated that the proposed method comes with better performance compared with the individual classifier.展开更多
基金the State Oceanic Administration "95" Principal Project "9501" National Antarctic"95" Principal
文摘The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean. This system can suit to the climate environment of very high temperature high moisture and very low temperature - supersaturation; it has a self-protection ability to against the hurricane - force wind over force 12 and the strong vibration during icebreaking, as well as strong magnetic disturbance. It has two sets of receiving-imagery processing systems for polar orbit low-resolution and quasi-stationary high-solution satellites. The key creation Points of this system are as follows: 1. the active gyro-control stabilization platform and a mixed mounting system of three rotating a - B and x -- y axes are used. It solved the tracing difficulties both in the low elevation angle and very high elevation angle of polar-orbit satellite, even in the status of ship moving with continuously changing its poition, direction and ship roll and pitch. 2. Imagery processing subsystem. The newest BORLAND-- DELPHI language and PASCAL language pro gramming software are used under WINDOWS 95 environment. It has a dynamic positioning nested-grid system and electric mapping grid data system. It can show the latitude-longitude of any point on the map, and marks any object such as ship, station or island, and draws the route. It can monitor cloud and temperature, forest fire, anomalous change of ocean and land. It can output satellite cloud maps of 24 bit with very high clarity. This system is very advanced in technique for the whole structure with the features of small volume, light weight and very low cost. It suits to very bad climate and ocean environment. Its imagery process ing system has complete functions with high resolution and being very easy to operate. It is not only suit to land use, but also and specially to all kinds of ship over the sea. It can be extended to domestic and international use. This system played a very important role in the 14th Chinese Antarctic Exploration Navigation, and was introduced a broad attention paid by Chinese newspapers and TV Stations.
文摘Due to the volume conduction,electroencephalogram(EEG) gives a rather blurred image of brain activities. It is a challenge for generating satisfactory performance with EEG. This paper studies the multiple areas fusion of EEG classifiers to improve the motor imagery EEG classification performance. Two feature extraction methods are employed to extract the feature from three different areas of EEG. One is power spectral density(PSD), and the other is common spatial patterns(CSP). Classifiers are designed based on the well-known linear discrimination analysis(LDA). The fusion of the individual classifiers is realized by means of the Choquet fuzzy integral. It is demonstrated that the proposed method comes with better performance compared with the individual classifier.