This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this nee...This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.展开更多
In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP...In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.展开更多
Up to now the imported commercial scanning probe microscope(SPM) has not an automatic error correcting and reducing system.In this paper a software system is presented to solve this problem.This software system gives ...Up to now the imported commercial scanning probe microscope(SPM) has not an automatic error correcting and reducing system.In this paper a software system is presented to solve this problem.This software system gives the average distance between the centers of mass of two adjacent atoms on the same horizontal line and its mean square root as well as the atoms shape and center of mass by filtering the measured image of a standard sample-highly oriented pyrolysis graphite(HOPG).This system forms the basis of SPMs automatic measurement error correcting.展开更多
A new surface inspection system for cold rolled strips based on image processing is introduced. The system is equipped withtwo different illumination structures and CCD matrix cameras. The structure and image processi...A new surface inspection system for cold rolled strips based on image processing is introduced. The system is equipped withtwo different illumination structures and CCD matrix cameras. The structure and image processing of the inspection system are described. Some efficient algorithms for image processing and classification are presented. The system is tested with strip samples fromcold rolling plants. The results show that the system can detect and recognize six common defects of cold rolled strips successfully.展开更多
The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its...The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .展开更多
To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the str...To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the strip surface,the design of parallel image processing system and the methods of algorithm implementation have been studied. By using field programmable gate array(FPGA) as hardware platform of implementation and considering the characteristic of detection system on the strip surface,a parallel image processing system implemented by using multi IP kernel is designed. According to different computing tasks and the load balancing capability of parallel processing system,the system could set different calculating numbers of nodes to meet the system's demand and save the hardware cost.展开更多
Hyperspectral remote sensing is becoming more and more important amongst remote sensing techniques. In this paper, we present a hyperspectral database(Hyper DB) designed to cooperate with an embedded hyperspectral i...Hyperspectral remote sensing is becoming more and more important amongst remote sensing techniques. In this paper, we present a hyperspectral database(Hyper DB) designed to cooperate with an embedded hyperspectral image processing system developed by the authors. Hyperspectral data are recognized and categorized by their land coverage class and band information, and can be imported from various sources such as airborne and spaceborne sensors carried by airplanes or satellites, as well as handhold instruments based on in situ ground observations. Spectral library files can be easily stored, indexed, viewed, and exported. Since Hyper DB follows standard design principles—independence, data safety, and compatibility—it satisfies the practical demand for managing categorized hyperspectral data, and can be readily expanded to other peripheral applications.展开更多
Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median...Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median filtering, binary processing and image edge extraction are used to pretreat the seam image. In the post-processing of seam image, the feature points of the target image are succesfully detected by using center line extraction and feature points detection algorithm based on slope analysis. The whole processing time is less than 150 ms, and the real-time processing of seam image can be implemented.展开更多
Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced ima...Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.展开更多
In micro milling machining,tool wear directly affects workpiece quality and accuracy,making effective tool wear monitoring a key factor in ensuring product integrity.The use of machine vision-based methods can provide...In micro milling machining,tool wear directly affects workpiece quality and accuracy,making effective tool wear monitoring a key factor in ensuring product integrity.The use of machine vision-based methods can provide an intuitive and efficient representation of tool wear conditions.However,micro milling tools have non-flat flanks,thin coatings can peel off,and spindle orientation is uncertain during downtime.These factors result in low pixel values,uneven illumination,and arbitrary tool position.To address this,we propose an image-based tool wear monitoring method.It combines multiple algorithms to restore lost pixels due to uneven illumination during segmentation and accurately extract wear areas.Experimental results demonstrate that the proposed algorithm exhibits high robustness to such images,effectively addressing the effects of illumination and spindle orientation.Additionally,the algorithm has low complexity,fast execution time,and significantly reduces the detection time in situ.展开更多
This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert ...This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.展开更多
The network infrastructure has evolved rapidly due to the everincreasing volume of users and data.The massive number of online devices and users has forced the network to transform and facilitate the operational neces...The network infrastructure has evolved rapidly due to the everincreasing volume of users and data.The massive number of online devices and users has forced the network to transform and facilitate the operational necessities of consumers.Among these necessities,network security is of prime significance.Network intrusion detection systems(NIDS)are among the most suitable approaches to detect anomalies and assaults on a network.However,keeping up with the network security requirements is quite challenging due to the constant mutation in attack patterns by the intruders.This paper presents an effective and prevalent framework for NIDS by merging image processing with convolution neural networks(CNN).The proposed framework first converts non-image data from network traffic into images and then further enhances those images by using the Gabor filter.The images are then classified using a CNN classifier.To assess the efficacy of the recommended method,four benchmark datasets i.e.,CSE-CIC-IDS2018,CIC-IDS-2017,ISCX-IDS 2012,and NSL-KDD were used.The proposed approach showed higher precision in contrast with the recent work on the mentioned datasets.Further,the proposed method is compared with the recent well-known image processing methods for NIDS.展开更多
A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-B...A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.展开更多
In the period of Industries 4.0,cyber-physical systems(CPSs)were a major study area.Such systems frequently occur in manufacturing processes and people’s everyday lives,and they communicate intensely among physical e...In the period of Industries 4.0,cyber-physical systems(CPSs)were a major study area.Such systems frequently occur in manufacturing processes and people’s everyday lives,and they communicate intensely among physical elements and lead to inconsistency.Due to the magnitude and importance of the systems they support,the cyber quantum models must function effectively.In this paper,an image-processing-based anomalous mobility detecting approach is suggested that may be added to systems at any time.The expense of glitches,failures or destroyed products is decreased when anomalous activities are detected and unplanned scenarios are avoided.The presently offered techniques are not well suited to these operations,which necessitate information systems for issue treatment and classification at a degree of complexity that is distinct from technology.To overcome such challenges in industrial cyber-physical systems,the Image Processing aided Computer Vision Technology for Fault Detection System(IM-CVFD)is proposed in this research.The Uncertainty Management technique is introduced in addition to achieving optimum knowledge in terms of latency and effectiveness.A thorough simulation was performed in an appropriate processing facility.The study results suggest that the IM-CVFD has a high performance,low error frequency,low energy consumption,and low delay with a strategy that provides.In comparison to traditional approaches,the IM-CVFD produces a more efficient outcome.展开更多
This project is mainly focused to develop system for animal researchers & wild life photographers to overcome so many challenges in their day life today. When they engage in such situation, they need to be patient...This project is mainly focused to develop system for animal researchers & wild life photographers to overcome so many challenges in their day life today. When they engage in such situation, they need to be patiently waiting for long hours, maybe several days in whatever location and under severe weather conditions until capturing what they are interested in. Also there is a big demand for rare wild life photo graphs. The proposed method makes the task automatically use microcontroller controlled camera, image processing and machine learning techniques. First with the aid of microcontroller and four passive IR sensors system will automatically detect the presence of animal and rotate the camera toward that direction. Then the motion detection algorithm will get the animal into middle of the frame and capture by high end auto focus web cam. Then the captured images send to the PC and are compared with photograph database to check whether the animal is exactly the same as the photographer choice. If that captured animal is the exactly one who need to capture then it will automatically capture more. Though there are several technologies available none of these are capable of recognizing what it captures. There is no detection of animal presence in different angles. Most of available equipment uses a set of PIR sensors and whatever it disturbs the IR field will automatically be captured and stored. Night time images are black and white and have less details and clarity due to infrared flash quality. If the infrared flash is designed for best image quality, range will be sacrificed. The photographer might be interested in a specific animal but there is no facility to recognize automatically whether captured animal is the photographer’s choice or not.展开更多
In order to fast transmission and processing of medical images and do not need to install client and plug-ins, the paper designed a kind of medical image reading system based on BS structure. This system improved the ...In order to fast transmission and processing of medical images and do not need to install client and plug-ins, the paper designed a kind of medical image reading system based on BS structure. This system improved the existing IWEB in the framework of PACS client image processing, medical image based on the service WEB completion port model. To realize the fast loading images with high concurrency, compared with the traditional WEB PACS, this system has the advantages of no client without plug-in installation, at the same time in the transmission and processing performance image has been greatly improved.展开更多
The objective of this work is to provide an automatic system to count white blood cells in a blood smear. To do so an experiment was assembled, composed by a standard microscope with two step motors coupled to its kno...The objective of this work is to provide an automatic system to count white blood cells in a blood smear. To do so an experiment was assembled, composed by a standard microscope with two step motors coupled to its knobs in order to move the microscope in x and y directions and a web cam which was mounted in the top of the microscope responsible for to acquire images from the smear. The step motors and the web cam are controlled by a microcomputer PC standard via software developed inDelphi. The motors use the parallel port to communicate with the PC and the camera use the USB port. The main idea is to set an initial point into the smear and the automated system will carry over the smear acquiring images (frames with 640 × 480 pixels) and counting the white blood cells encountered. The double histogram threshold technique is implemented to initially exclude the red cells from the image leaving only the white ones. Preliminaries results are obtained and show that the system is quite fast and has a good capacity of selection, even when different kinds of smear are used.展开更多
To enhance the real-time performance of image processing,effectively reduce video transmission bandwidth and storage space,and improve transmission efficiency,a real-time image processing system was designed using a F...To enhance the real-time performance of image processing,effectively reduce video transmission bandwidth and storage space,and improve transmission efficiency,a real-time image processing system was designed using a Field Programmable Gate Array(FPGA).The system is mainly divided into image acquisition,image processing,and image display subsystems.Images are captured using a camera module and transmitted to the image processing module for processing,and finally displayed via an HDMI monitor.Measurements indicate that the system has strong real-time performance,low power consumption,and high portability,making it valuable in fields such as surveillance and security,medical imaging,and industrial automation.展开更多
In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the qualit...In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively.展开更多
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie...Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.展开更多
文摘This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.
基金Supported by the National Natural Science Foundation of China (No.60472046)
文摘In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.
文摘Up to now the imported commercial scanning probe microscope(SPM) has not an automatic error correcting and reducing system.In this paper a software system is presented to solve this problem.This software system gives the average distance between the centers of mass of two adjacent atoms on the same horizontal line and its mean square root as well as the atoms shape and center of mass by filtering the measured image of a standard sample-highly oriented pyrolysis graphite(HOPG).This system forms the basis of SPMs automatic measurement error correcting.
文摘A new surface inspection system for cold rolled strips based on image processing is introduced. The system is equipped withtwo different illumination structures and CCD matrix cameras. The structure and image processing of the inspection system are described. Some efficient algorithms for image processing and classification are presented. The system is tested with strip samples fromcold rolling plants. The results show that the system can detect and recognize six common defects of cold rolled strips successfully.
基金This work was supported by Science and Technology Project of State Grid Corporation“Research on Key Technologies of Power Artificial Intelligence Open Platform”(5700-202155260A-0-0-00).
文摘The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .
基金The 111 project(B07018) Supported by Program for Changjiang Scholars and Innovative Research Teamin University(IRT0423)
文摘To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the strip surface,the design of parallel image processing system and the methods of algorithm implementation have been studied. By using field programmable gate array(FPGA) as hardware platform of implementation and considering the characteristic of detection system on the strip surface,a parallel image processing system implemented by using multi IP kernel is designed. According to different computing tasks and the load balancing capability of parallel processing system,the system could set different calculating numbers of nodes to meet the system's demand and save the hardware cost.
文摘Hyperspectral remote sensing is becoming more and more important amongst remote sensing techniques. In this paper, we present a hyperspectral database(Hyper DB) designed to cooperate with an embedded hyperspectral image processing system developed by the authors. Hyperspectral data are recognized and categorized by their land coverage class and band information, and can be imported from various sources such as airborne and spaceborne sensors carried by airplanes or satellites, as well as handhold instruments based on in situ ground observations. Spectral library files can be easily stored, indexed, viewed, and exported. Since Hyper DB follows standard design principles—independence, data safety, and compatibility—it satisfies the practical demand for managing categorized hyperspectral data, and can be readily expanded to other peripheral applications.
基金The work was supported by National Natural Science Foundation of China (No. 50975195).
文摘Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median filtering, binary processing and image edge extraction are used to pretreat the seam image. In the post-processing of seam image, the feature points of the target image are succesfully detected by using center line extraction and feature points detection algorithm based on slope analysis. The whole processing time is less than 150 ms, and the real-time processing of seam image can be implemented.
基金funded by Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/MRC/13/771-4.
文摘Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.
基金Supported by National Natural Science Foundation of China(Grant No.52175528)。
文摘In micro milling machining,tool wear directly affects workpiece quality and accuracy,making effective tool wear monitoring a key factor in ensuring product integrity.The use of machine vision-based methods can provide an intuitive and efficient representation of tool wear conditions.However,micro milling tools have non-flat flanks,thin coatings can peel off,and spindle orientation is uncertain during downtime.These factors result in low pixel values,uneven illumination,and arbitrary tool position.To address this,we propose an image-based tool wear monitoring method.It combines multiple algorithms to restore lost pixels due to uneven illumination during segmentation and accurately extract wear areas.Experimental results demonstrate that the proposed algorithm exhibits high robustness to such images,effectively addressing the effects of illumination and spindle orientation.Additionally,the algorithm has low complexity,fast execution time,and significantly reduces the detection time in situ.
基金supported from the Strategic Pioneer Program of the Astronomy Large-Scale Scientific FacilityChinese Academy of Sciences and the Science and Education Integration Funding of University of Chinese Academy of Sciences+9 种基金the supports from the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)the supports from the Strategic Priority Research Program of the Chinese Academy of Sciences under grant No.XDB0550000the National Natural Science Foundation of China(NSFC,grant Nos.12422303 and12261141690)the supports from the NSFC(grant No.12403024)supports from the NSFC through grant Nos.11988101 and 11933004the Postdoctoral Fellowship Program of CPSF under grant No.GZB20240731the Young Data Scientist Project of the National Astronomical Data Centerthe China Post-doctoral Science Foundation(No.2023M743447)supports from the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE。
文摘This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.
基金This work was supported by the National Research Foundation of Korea(NRF)NRF-2022R1A2C1011774.
文摘The network infrastructure has evolved rapidly due to the everincreasing volume of users and data.The massive number of online devices and users has forced the network to transform and facilitate the operational necessities of consumers.Among these necessities,network security is of prime significance.Network intrusion detection systems(NIDS)are among the most suitable approaches to detect anomalies and assaults on a network.However,keeping up with the network security requirements is quite challenging due to the constant mutation in attack patterns by the intruders.This paper presents an effective and prevalent framework for NIDS by merging image processing with convolution neural networks(CNN).The proposed framework first converts non-image data from network traffic into images and then further enhances those images by using the Gabor filter.The images are then classified using a CNN classifier.To assess the efficacy of the recommended method,four benchmark datasets i.e.,CSE-CIC-IDS2018,CIC-IDS-2017,ISCX-IDS 2012,and NSL-KDD were used.The proposed approach showed higher precision in contrast with the recent work on the mentioned datasets.Further,the proposed method is compared with the recent well-known image processing methods for NIDS.
基金This project was supported by the National Natural Science Foundation of China(60135020) National Key Pre-researchProject of China(413010701 -3) .
文摘A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.
文摘In the period of Industries 4.0,cyber-physical systems(CPSs)were a major study area.Such systems frequently occur in manufacturing processes and people’s everyday lives,and they communicate intensely among physical elements and lead to inconsistency.Due to the magnitude and importance of the systems they support,the cyber quantum models must function effectively.In this paper,an image-processing-based anomalous mobility detecting approach is suggested that may be added to systems at any time.The expense of glitches,failures or destroyed products is decreased when anomalous activities are detected and unplanned scenarios are avoided.The presently offered techniques are not well suited to these operations,which necessitate information systems for issue treatment and classification at a degree of complexity that is distinct from technology.To overcome such challenges in industrial cyber-physical systems,the Image Processing aided Computer Vision Technology for Fault Detection System(IM-CVFD)is proposed in this research.The Uncertainty Management technique is introduced in addition to achieving optimum knowledge in terms of latency and effectiveness.A thorough simulation was performed in an appropriate processing facility.The study results suggest that the IM-CVFD has a high performance,low error frequency,low energy consumption,and low delay with a strategy that provides.In comparison to traditional approaches,the IM-CVFD produces a more efficient outcome.
文摘This project is mainly focused to develop system for animal researchers & wild life photographers to overcome so many challenges in their day life today. When they engage in such situation, they need to be patiently waiting for long hours, maybe several days in whatever location and under severe weather conditions until capturing what they are interested in. Also there is a big demand for rare wild life photo graphs. The proposed method makes the task automatically use microcontroller controlled camera, image processing and machine learning techniques. First with the aid of microcontroller and four passive IR sensors system will automatically detect the presence of animal and rotate the camera toward that direction. Then the motion detection algorithm will get the animal into middle of the frame and capture by high end auto focus web cam. Then the captured images send to the PC and are compared with photograph database to check whether the animal is exactly the same as the photographer choice. If that captured animal is the exactly one who need to capture then it will automatically capture more. Though there are several technologies available none of these are capable of recognizing what it captures. There is no detection of animal presence in different angles. Most of available equipment uses a set of PIR sensors and whatever it disturbs the IR field will automatically be captured and stored. Night time images are black and white and have less details and clarity due to infrared flash quality. If the infrared flash is designed for best image quality, range will be sacrificed. The photographer might be interested in a specific animal but there is no facility to recognize automatically whether captured animal is the photographer’s choice or not.
文摘In order to fast transmission and processing of medical images and do not need to install client and plug-ins, the paper designed a kind of medical image reading system based on BS structure. This system improved the existing IWEB in the framework of PACS client image processing, medical image based on the service WEB completion port model. To realize the fast loading images with high concurrency, compared with the traditional WEB PACS, this system has the advantages of no client without plug-in installation, at the same time in the transmission and processing performance image has been greatly improved.
文摘The objective of this work is to provide an automatic system to count white blood cells in a blood smear. To do so an experiment was assembled, composed by a standard microscope with two step motors coupled to its knobs in order to move the microscope in x and y directions and a web cam which was mounted in the top of the microscope responsible for to acquire images from the smear. The step motors and the web cam are controlled by a microcomputer PC standard via software developed inDelphi. The motors use the parallel port to communicate with the PC and the camera use the USB port. The main idea is to set an initial point into the smear and the automated system will carry over the smear acquiring images (frames with 640 × 480 pixels) and counting the white blood cells encountered. The double histogram threshold technique is implemented to initially exclude the red cells from the image leaving only the white ones. Preliminaries results are obtained and show that the system is quite fast and has a good capacity of selection, even when different kinds of smear are used.
文摘To enhance the real-time performance of image processing,effectively reduce video transmission bandwidth and storage space,and improve transmission efficiency,a real-time image processing system was designed using a Field Programmable Gate Array(FPGA).The system is mainly divided into image acquisition,image processing,and image display subsystems.Images are captured using a camera module and transmitted to the image processing module for processing,and finally displayed via an HDMI monitor.Measurements indicate that the system has strong real-time performance,low power consumption,and high portability,making it valuable in fields such as surveillance and security,medical imaging,and industrial automation.
基金Project (10776020) supported by the Joint Foundation of the National Natural Science Foundation of China and China Academy of Engineering Physics
文摘In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natual Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,ChinaProject Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.