In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the...In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.展开更多
A state-of-the-art review is presented of mathematical manoeuvring models for surface ships and parameter estimation methods that have been used to build mathematical manoeuvring models for surface ships. In the first...A state-of-the-art review is presented of mathematical manoeuvring models for surface ships and parameter estimation methods that have been used to build mathematical manoeuvring models for surface ships. In the first part, the classical manoeuvring models, such as the Abkowitz model, MMG, Nomoto and their revised versions, are revisited and the model structure with the hydrodynamic coefficients is also presented.Then, manoeuvring tests, including both the scaled model tests and sea trials, are introduced with the fact that the test data is critically important to obtain reliable results using parameter estimation methods. In the last part, selected papers published in journals and international conferences are reviewed and the statistical analysis of the manoeuvring models, test data, system identification methods and environmental disturbances used in the paper is presented.展开更多
The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents consid...The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents considerable challenges.This study focuses on the helically twisted wire rope-sheave contact and proposes a contact force model that incorporates complex geometric features through a parameter identification approach.The model's impact on contact forces and system dynamics is thoroughly investigated.Leveraging a point contact model and an elliptic integral approximation,a loss function is formulated using the finite element(FE)contact model results as the reference data.Geometric parameters are subsequently determined by optimizing this loss function via a genetic algorithm(GA).The findings reveal that the contact stiffness increases with the wire rope pitch length,the radius of principal curvature,and the elliptic eccentricity of the contact zone.The proposed contact force model is integrated into a rigid-flexible coupled dynamics model,developed by the absolute node coordinate formulation,to examine the effects of contact geometry on system dynamics.The results demonstrate that the variations in wire rope geometry alter the contact stiffness,which in turn affects dynamic rope tension through frictional energy dissipation.The enhanced model's predictions exhibit superior alignment with the experimental data,thereby validating the methodology.This approach provides new insights for deducing the contact geometry from kinetic parameters and monitoring the performance degradation of mechanical components.展开更多
Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in...Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms.展开更多
An efficient determination of the geological characteristics and soil-rock type ahead of a tunnel face is critical for adjusting construction parameters during shield tunnelling.In general,operational engineers rely o...An efficient determination of the geological characteristics and soil-rock type ahead of a tunnel face is critical for adjusting construction parameters during shield tunnelling.In general,operational engineers rely on visual observations of mucky soil types from belt conveyors.This results in shield halting and involves both time and cost implications.This paper proposes a deep learning approach designed to identify mucky soil by monitoring a video installed on the strut of a belt conveyer.The proposed approach comprises four steps:(1)image acquisition,(2)enhanced you-only-look-once(YOLO)modelling,(3)model performance evaluation,and(4)soil identification based on an optimal analysis.The enhanced YOLO model is a deep image detection algorithm.It was introduced by integrating two innovative strategies:data augmentation and imbalance learning.This enhancement accelerates the speed of image identification and improves the overall classification performance.A case study of shield tunnelling in the soil-rock mixed strata of the GuangzhoueFoshan intercity railway line was conducted to validate the proposed approach.The results indicate that the enhanced YOLO model achieves a classification performance comparable to that of the highly optimised AlexNet and GoogleNet.Additionally,the proposed approach more effectively detects the muck soil content than manual observation.This demonstrates its potential for real-time applications in shield tunnelling operations.展开更多
In order to improve the traditional teaching model of traditional Chinese medicine identification course for graduate students of pharmacy,this paper described the research on constructing and practicing the blended t...In order to improve the traditional teaching model of traditional Chinese medicine identification course for graduate students of pharmacy,this paper described the research on constructing and practicing the blended teaching model of"online+offline"based on the teaching concept of TfU by taking the course of"Authentic Medicinal Materials and Quality of Traditional Chinese Medicine"as an example.In the preparatory phase,through resource integration and course content decomposition,it identifies"generative topics"to engage students in pre-class online discussions.During the instructional phase,"comprehension-oriented objectives"are established based on learning analytics,followed by the implementation of"understanding-focused activities"for guided inquiry in offline classrooms.The post-class phase employs online extended materials to conduct"sustained assessment"through evaluations and summaries,thereby continuously optimizing subsequent teaching practices.This pedagogical framework not only effectively cultivates investigative research thinking among graduate students but also enhances standardized management and scientific development of the teaching team.The practical research outcomes and experiences derived from this model can provide valuable references for analogous course reforms.展开更多
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach...The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering.展开更多
In current neural network algorithms for nuclide identification in high-background,poor-resolution detectors,traditional network paradigms including back-propagation networks,convolutional neural networks,recurrent ne...In current neural network algorithms for nuclide identification in high-background,poor-resolution detectors,traditional network paradigms including back-propagation networks,convolutional neural networks,recurrent neural networks,etc.,have been limited in research on γ spectrum analysis because of their inherent mathematical mechanisms.It is difficult to make progress in terms of training data requirements and prediction accuracy.In contrast to traditional network paradigms,network models based on the transformer structure have the characteristics of parallel computing,position encoding,and deep stacking,which have enabled good performance in natural language processing tasks in recent years.Therefore,in this paper,a transformer-based neural network (TBNN) model is proposed to achieve nuclide identification for the first time.First,the Geant4 program was used to generate the basic single-nuclide energy spectrum through Monte Carlo simulations.A multi-nuclide energy spectrum database was established for neural network training using random matrices of γ-ray energy,activity,and noise.Based on the encoder–decoder structure,a network topology based on the transformer was built,transforming the 1024-channel energy spectrum data into a 32×32 energy spectrum sequence as the model input.Through experiments and adjustments of model parameters,including the learning rate of the TBNN model,number of attention heads,and number of network stacking layers,the overall recognition rate reached 98.7%.Additionally,this database was used for training AI models such as back-propagation networks,convolutional neural networks,residual networks,and long shortterm memory neural networks,with overall recognition rates of 92.8%,95.3%,96.3%,and 96.6%,respectively.This indicates that the TBNN model exhibited better nuclide identification among these AI models,providing an important reference and theoretical basis for the practical application of transformers in the qualitative and quantitative analysis of the γ spectrum.展开更多
The efficiency of tunnel excavation,rock strength,stability of surrounding rock,and underground engineering disasters are closely related to lithology.Accurately identifying lithology is a necessary prerequisite for i...The efficiency of tunnel excavation,rock strength,stability of surrounding rock,and underground engineering disasters are closely related to lithology.Accurately identifying lithology is a necessary prerequisite for intelligent,safe,and efficient tunnel construction.The design of conventional recognition models heavily relies on experience and extensive calculations.To develop a model suitable for deployment on construction sites and capable of accurate lithology identification,a fast search method for lithology identification models is proposed.This method integrates geological knowledge,apparent feature extraction techniques,and search algorithms.An efficient feature extraction super network using multi-scale geological features of rock surface is constructed,a model evaluation method that comprehensively considers accuracy and latency is developed,and differential evolution algorithm is used to search for the optimal model parameters.Experiments demonstrate that the proposed method enables the model to evolve faster and more accurately,and eventually a model(LithoNet)suitable for lithological classification is found.It only takes 2.10 ms to infer an image of 224×224,which is 57.25%faster than MobileNet v3 and 62.83%faster than ShuffleNet V2.The F1-score of LithoNet is 0.9874,surpassing classical models such as EfficientNetV2-S.LithoNet can be easily deployed on portable devices,effectively promoting the intelligence and accuracy of lithology identification at engineering sites.展开更多
To enhance the recognition accuracy of current network models for apple leaf diseases,a lightweight model that leverages an enhanced MobileNetV3-Small architecture is introduced in this study.The improved model utiliz...To enhance the recognition accuracy of current network models for apple leaf diseases,a lightweight model that leverages an enhanced MobileNetV3-Small architecture is introduced in this study.The improved model utilizes MobileNetV3-Small,a lightweight architecture with fewer parameters,serving as the primary network for feature extraction.It integrates a weighted bi-directional feature pyramid network that fuses multi-scale features,thereby enhancing the model's capacity to detect disease characteristics across various scales.Additionally,an efficient multi-scale attention mechanism is integrated to mitigate the influence of complex background noise in natural environments,further improving disease recognition accuracy.The experiment utilizes the AppleLeaf9 public dataset to classify healthy apple leaves and eight distinct disease types.The results indicate that,when using the augmented dataset,the improved model achieves a recognition accuracy of 95.98%,with only 1.72 M parameters,123.16 M FLOPs,and an inference time of just 14.10 ms.Compared with eight other lightweight neural network models,including MobileNetV2,ShuffleNet_v2_1.5×,ResNet50,MobileNetV3-Large,EfficientNet-B0,MobileNetV3-Small,MobileNetV4-Conv-Small,and MobileNetV4-Conv-Medium,the improved model demonstrates superior accuracy.In particular,the proposed model achieves a recognition accuracy improvement of 0.93 percentage points compared with the baseline MobileNetV3-Small model.The optimized model introduced in this study effectively improves the accuracy in identifying diseases in apple leaves,while maintaining a low parameter count and fast inference speed,thus offering a novel approach for deploying disease recognition models on agricultural electronic devices.展开更多
The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across divers...The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across diverse geological settings.Large-scale models(LSMs),with vast parameter spaces and extensive training datasets,excel in solving complex visual problems.This study explores the potential of using one such LSM,Segment anything model(SAM),to identify facet-type discontinuities across several outcrops via interactive prompting.The findings demonstrate that SAM effectively segments two-dimensional(2D)discontinuities,with its generalization capability validated on a dataset of 2426 identified discontinuities across 170 outcrops.The model achieves 0.78 mean IoU and 0.86 average precision using 11-point prompts.To extend to three dimensions(3D),a framework integrating SAM with Structure-from-Motion(SfM)was proposed.By utilizing the inherent but often overlooked relationship between image pixels and point clouds in SfM,the identification process was simplified and generalized across photogrammetric devices.Benchmark studies showed that the framework achieved 0.91 average precision,identifying 87 discontinuities in Dataset-3D.The results confirm its high precision and efficiency,making it a valuable tool for data annotation.The proposed method offers a practical solution for geological investigations.展开更多
To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network mo...To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification.展开更多
Climate change and human activities are primary drivers of runoff variations,significantly impacting the hydrological balance of river basins.In recent decades,the Yellow River Basin,China has experienced a marked dec...Climate change and human activities are primary drivers of runoff variations,significantly impacting the hydrological balance of river basins.In recent decades,the Yellow River Basin,China has experienced a marked decline in runoff,posing challenges to the sustainable development of regional water resources and ecosystem stability.To enhance the understanding of runoff dynamics in the basin,we selected the Dahei River Basin,a representative tributary in the upper reaches of the Yellow River Basin as the study area.A comprehensive analysis of runoff trends and contributing factors was conducted using the data on hydrology,meteorology,and water resource development and utilization.Abrupt change years of runoff series in the Dahei River Basin was identified by the Mann-Kendall and Pettitt tests:1999 at Dianshang,Qixiaying,and Meidai hydrological stations and 1995 at Sanliang hydrological station.Through hydrological simulations based on the Variable Infiltration Capacity(VIC)model,we quantified the factors driving runoff evolution in the Dahei River Basin,with climate change contributing 9.92%–22.91%and human activities contributing 77.09%–90.08%.The Budyko hypothesis method provided similar results,with climate change contributing 13.06%–20.89%and human activities contributing 79.11%–86.94%.Both methods indicated that human activities,particularly water consumption,were dominant factors in the runoff variations of the Dahei River Basin.The integration of hydrological modeling with attribution analysis offers valuable insights into runoff evolution,facilitating adaptive strategies to mitigate water scarcity in arid and semi-arid areas.展开更多
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well...A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.展开更多
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan...Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3...Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3DGait)represented by a set of interpretable 3DGait descriptors based on a 3D parametric body model.The 3DGait descriptors are utilised as invariant gait features in the 3DGait recognition method to address object carrying and dressing.The 3DGait recognitionmethod involves 2-dimensional(2D)to 3DGaitdata learningbasedon3Dvirtual samples,a semantic gait parameter estimation Long Short Time Memory(LSTM)network(3D-SGPE-LSTM),a feature fusion deep model based on a multi-set canonical correlation analysis,and SoftMax recognition network.First,a sensory experiment based on 3D body shape and pose deformation with 3D virtual dressing is used to fit 3DGait onto the given 2D gait images.3Dinterpretable semantic parameters control the 3D morphing and dressing involved.Similarity degree measurement determines the semantic descriptors of 2D gait images of subjects with various shapes,poses and styles.Second,using the 2D gait images as input and the subjects’corresponding 3D semantic descriptors as output,an end-to-end 3D-SGPE-LSTM is constructed and trained.Third,body shape,pose and external gait factors(3D-eFactors)are estimated using the 3D-SGPE-LSTM model to create a set of interpretable gait descriptors to represent the 3DGait Model,i.e.,3D intrinsic semantic shape descriptor(3DShape);3D skeleton-based gait pose descriptor(3D-Pose)and 3D dressing with other 3D-eFators.Finally,the 3D-Shape and 3D-Pose descriptors are coupled to a unified pattern space by learning prior knowledge from the 3D-eFators.Practical research on CASIA B,CMU MoBo,TUM GAID and GPJATK databases shows that 3DGait is robust against object carrying and dressing variations,especially under multi-cross variations.展开更多
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i...Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.展开更多
In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of...In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of motion is very meaningful to realize trajectory prediction and adaptive motion control of the USV. An interactive identification algorithm (ESO–MILS, extended state observer–multi-innovation least squares) based on ESO is proposed. The robustness of online identification is improved by expanding the state observer to estimate the current disturbance without making artificial assumptions. Specifically, the three-degree-of-freedom dynamic equation of the double propeller propulsion USV is constructed. A linear model for online identification is derived by parameterization. Based on the least square criterion function, it is proved that the interactive identification method with disturbance estimation can improve the identification accuracy from the perspective of mathematical expectation. The extended state observer is designed to estimate the unknown disturbance in the model. The online interactive update improves the disturbance immunity of the identification algorithm. Finally, the effectiveness of the interactive identification algorithm is verified by simulation experiment and real ship experiment.展开更多
文摘In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.
基金the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineeringfinanced by the Portuguese Foundation for Science and Technology (Fundacao para a Ciência e Tecnologia-FCT) under contract UIDB/UIDP/00134/2020。
文摘A state-of-the-art review is presented of mathematical manoeuvring models for surface ships and parameter estimation methods that have been used to build mathematical manoeuvring models for surface ships. In the first part, the classical manoeuvring models, such as the Abkowitz model, MMG, Nomoto and their revised versions, are revisited and the model structure with the hydrodynamic coefficients is also presented.Then, manoeuvring tests, including both the scaled model tests and sea trials, are introduced with the fact that the test data is critically important to obtain reliable results using parameter estimation methods. In the last part, selected papers published in journals and international conferences are reviewed and the statistical analysis of the manoeuvring models, test data, system identification methods and environmental disturbances used in the paper is presented.
基金supported by the National Key Research and Development Program of China(No.2023YFC3010400)。
文摘The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents considerable challenges.This study focuses on the helically twisted wire rope-sheave contact and proposes a contact force model that incorporates complex geometric features through a parameter identification approach.The model's impact on contact forces and system dynamics is thoroughly investigated.Leveraging a point contact model and an elliptic integral approximation,a loss function is formulated using the finite element(FE)contact model results as the reference data.Geometric parameters are subsequently determined by optimizing this loss function via a genetic algorithm(GA).The findings reveal that the contact stiffness increases with the wire rope pitch length,the radius of principal curvature,and the elliptic eccentricity of the contact zone.The proposed contact force model is integrated into a rigid-flexible coupled dynamics model,developed by the absolute node coordinate formulation,to examine the effects of contact geometry on system dynamics.The results demonstrate that the variations in wire rope geometry alter the contact stiffness,which in turn affects dynamic rope tension through frictional energy dissipation.The enhanced model's predictions exhibit superior alignment with the experimental data,thereby validating the methodology.This approach provides new insights for deducing the contact geometry from kinetic parameters and monitoring the performance degradation of mechanical components.
基金supported by the National Natural Science Foundation of China(Grant Nos.62303197,62273214)the Natural Science Foundation of Shandong Province(ZR2024MFO18).
文摘Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms.
基金funded by Guangdong Province Scientific Research Project for Young Innovation Talent(Grant No.2022KQNCX239)The Pearl River Talent Recruitment Program(Grant No.2019CX01G338),Guangdong Province.
文摘An efficient determination of the geological characteristics and soil-rock type ahead of a tunnel face is critical for adjusting construction parameters during shield tunnelling.In general,operational engineers rely on visual observations of mucky soil types from belt conveyors.This results in shield halting and involves both time and cost implications.This paper proposes a deep learning approach designed to identify mucky soil by monitoring a video installed on the strut of a belt conveyer.The proposed approach comprises four steps:(1)image acquisition,(2)enhanced you-only-look-once(YOLO)modelling,(3)model performance evaluation,and(4)soil identification based on an optimal analysis.The enhanced YOLO model is a deep image detection algorithm.It was introduced by integrating two innovative strategies:data augmentation and imbalance learning.This enhancement accelerates the speed of image identification and improves the overall classification performance.A case study of shield tunnelling in the soil-rock mixed strata of the GuangzhoueFoshan intercity railway line was conducted to validate the proposed approach.The results indicate that the enhanced YOLO model achieves a classification performance comparable to that of the highly optimised AlexNet and GoogleNet.Additionally,the proposed approach more effectively detects the muck soil content than manual observation.This demonstrates its potential for real-time applications in shield tunnelling operations.
基金Supported by Guangxi Degree and Postgraduate Education Reform Project(JGY2023213,JGY2023211).
文摘In order to improve the traditional teaching model of traditional Chinese medicine identification course for graduate students of pharmacy,this paper described the research on constructing and practicing the blended teaching model of"online+offline"based on the teaching concept of TfU by taking the course of"Authentic Medicinal Materials and Quality of Traditional Chinese Medicine"as an example.In the preparatory phase,through resource integration and course content decomposition,it identifies"generative topics"to engage students in pre-class online discussions.During the instructional phase,"comprehension-oriented objectives"are established based on learning analytics,followed by the implementation of"understanding-focused activities"for guided inquiry in offline classrooms.The post-class phase employs online extended materials to conduct"sustained assessment"through evaluations and summaries,thereby continuously optimizing subsequent teaching practices.This pedagogical framework not only effectively cultivates investigative research thinking among graduate students but also enhances standardized management and scientific development of the teaching team.The practical research outcomes and experiences derived from this model can provide valuable references for analogous course reforms.
基金supported by the National Natural Science Foundation of China(Grant Nos.41941017 and 42177139)Graduate Innovation Fund of Jilin University(Grant No.2024CX099)。
文摘The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province(Nos.2024NSFSC0422,23NSFSCC0116)Nuclear Energy Development Project(No.[2021]-88).
文摘In current neural network algorithms for nuclide identification in high-background,poor-resolution detectors,traditional network paradigms including back-propagation networks,convolutional neural networks,recurrent neural networks,etc.,have been limited in research on γ spectrum analysis because of their inherent mathematical mechanisms.It is difficult to make progress in terms of training data requirements and prediction accuracy.In contrast to traditional network paradigms,network models based on the transformer structure have the characteristics of parallel computing,position encoding,and deep stacking,which have enabled good performance in natural language processing tasks in recent years.Therefore,in this paper,a transformer-based neural network (TBNN) model is proposed to achieve nuclide identification for the first time.First,the Geant4 program was used to generate the basic single-nuclide energy spectrum through Monte Carlo simulations.A multi-nuclide energy spectrum database was established for neural network training using random matrices of γ-ray energy,activity,and noise.Based on the encoder–decoder structure,a network topology based on the transformer was built,transforming the 1024-channel energy spectrum data into a 32×32 energy spectrum sequence as the model input.Through experiments and adjustments of model parameters,including the learning rate of the TBNN model,number of attention heads,and number of network stacking layers,the overall recognition rate reached 98.7%.Additionally,this database was used for training AI models such as back-propagation networks,convolutional neural networks,residual networks,and long shortterm memory neural networks,with overall recognition rates of 92.8%,95.3%,96.3%,and 96.6%,respectively.This indicates that the TBNN model exhibited better nuclide identification among these AI models,providing an important reference and theoretical basis for the practical application of transformers in the qualitative and quantitative analysis of the γ spectrum.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52279103 and 52379103)the Natural Science Foundation of Shandong Province(Grant No.ZR2023YQ049).
文摘The efficiency of tunnel excavation,rock strength,stability of surrounding rock,and underground engineering disasters are closely related to lithology.Accurately identifying lithology is a necessary prerequisite for intelligent,safe,and efficient tunnel construction.The design of conventional recognition models heavily relies on experience and extensive calculations.To develop a model suitable for deployment on construction sites and capable of accurate lithology identification,a fast search method for lithology identification models is proposed.This method integrates geological knowledge,apparent feature extraction techniques,and search algorithms.An efficient feature extraction super network using multi-scale geological features of rock surface is constructed,a model evaluation method that comprehensively considers accuracy and latency is developed,and differential evolution algorithm is used to search for the optimal model parameters.Experiments demonstrate that the proposed method enables the model to evolve faster and more accurately,and eventually a model(LithoNet)suitable for lithological classification is found.It only takes 2.10 ms to infer an image of 224×224,which is 57.25%faster than MobileNet v3 and 62.83%faster than ShuffleNet V2.The F1-score of LithoNet is 0.9874,surpassing classical models such as EfficientNetV2-S.LithoNet can be easily deployed on portable devices,effectively promoting the intelligence and accuracy of lithology identification at engineering sites.
基金Sponsored by China National Key R&D Program during the 13th Five-year Plan Period(Grant No.2019YFD0901605)。
文摘To enhance the recognition accuracy of current network models for apple leaf diseases,a lightweight model that leverages an enhanced MobileNetV3-Small architecture is introduced in this study.The improved model utilizes MobileNetV3-Small,a lightweight architecture with fewer parameters,serving as the primary network for feature extraction.It integrates a weighted bi-directional feature pyramid network that fuses multi-scale features,thereby enhancing the model's capacity to detect disease characteristics across various scales.Additionally,an efficient multi-scale attention mechanism is integrated to mitigate the influence of complex background noise in natural environments,further improving disease recognition accuracy.The experiment utilizes the AppleLeaf9 public dataset to classify healthy apple leaves and eight distinct disease types.The results indicate that,when using the augmented dataset,the improved model achieves a recognition accuracy of 95.98%,with only 1.72 M parameters,123.16 M FLOPs,and an inference time of just 14.10 ms.Compared with eight other lightweight neural network models,including MobileNetV2,ShuffleNet_v2_1.5×,ResNet50,MobileNetV3-Large,EfficientNet-B0,MobileNetV3-Small,MobileNetV4-Conv-Small,and MobileNetV4-Conv-Medium,the improved model demonstrates superior accuracy.In particular,the proposed model achieves a recognition accuracy improvement of 0.93 percentage points compared with the baseline MobileNetV3-Small model.The optimized model introduced in this study effectively improves the accuracy in identifying diseases in apple leaves,while maintaining a low parameter count and fast inference speed,thus offering a novel approach for deploying disease recognition models on agricultural electronic devices.
基金support in dataset preparation.This study was funded by National Natural Science Foundation of China(Nos.42422704 and 52379109)Opening the fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(No.SKLGP2024K028)Science and Technology Research and Design Projects of China State Construction Engineering Corporation Ltd.(No.CSCEC-2024-Q-68).
文摘The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across diverse geological settings.Large-scale models(LSMs),with vast parameter spaces and extensive training datasets,excel in solving complex visual problems.This study explores the potential of using one such LSM,Segment anything model(SAM),to identify facet-type discontinuities across several outcrops via interactive prompting.The findings demonstrate that SAM effectively segments two-dimensional(2D)discontinuities,with its generalization capability validated on a dataset of 2426 identified discontinuities across 170 outcrops.The model achieves 0.78 mean IoU and 0.86 average precision using 11-point prompts.To extend to three dimensions(3D),a framework integrating SAM with Structure-from-Motion(SfM)was proposed.By utilizing the inherent but often overlooked relationship between image pixels and point clouds in SfM,the identification process was simplified and generalized across photogrammetric devices.Benchmark studies showed that the framework achieved 0.91 average precision,identifying 87 discontinuities in Dataset-3D.The results confirm its high precision and efficiency,making it a valuable tool for data annotation.The proposed method offers a practical solution for geological investigations.
基金supported by National Natural Science Foundation of China(No.61862037)Lanzhou Jiaotong University Tianyou Innovation Team Project(No.TY202002)。
文摘To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification.
基金supported by the National Key Research and Development Program of China(2022YFC3204401)the National Natural Science Foundation of China(U23A2001,U2243234)+2 种基金the Major Science and Technology Projects of Inner Mongolia Autonomous Region(KCX2024013-1,2022EEDSKJXM005)the Inner Mongolia Autonomous Region Science and Technology Leading Talent Team(2022LJRC0007)the Inner Mongolia Agricultural University Basic Research Business Expenses Project(BR221012,BR221204).
文摘Climate change and human activities are primary drivers of runoff variations,significantly impacting the hydrological balance of river basins.In recent decades,the Yellow River Basin,China has experienced a marked decline in runoff,posing challenges to the sustainable development of regional water resources and ecosystem stability.To enhance the understanding of runoff dynamics in the basin,we selected the Dahei River Basin,a representative tributary in the upper reaches of the Yellow River Basin as the study area.A comprehensive analysis of runoff trends and contributing factors was conducted using the data on hydrology,meteorology,and water resource development and utilization.Abrupt change years of runoff series in the Dahei River Basin was identified by the Mann-Kendall and Pettitt tests:1999 at Dianshang,Qixiaying,and Meidai hydrological stations and 1995 at Sanliang hydrological station.Through hydrological simulations based on the Variable Infiltration Capacity(VIC)model,we quantified the factors driving runoff evolution in the Dahei River Basin,with climate change contributing 9.92%–22.91%and human activities contributing 77.09%–90.08%.The Budyko hypothesis method provided similar results,with climate change contributing 13.06%–20.89%and human activities contributing 79.11%–86.94%.Both methods indicated that human activities,particularly water consumption,were dominant factors in the runoff variations of the Dahei River Basin.The integration of hydrological modeling with attribution analysis offers valuable insights into runoff evolution,facilitating adaptive strategies to mitigate water scarcity in arid and semi-arid areas.
基金Supported by Shanghai Municipal Science and Technology Program (Grant No.21511101701)National Key Research and Development Program of China (Grant No.2021YFC0122704)。
文摘A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.
基金supported by the National Natural Science Foundation of China(No.12072056)the National Key Research and Development Program of China(No.2018YFA0702800)+1 种基金the Jiangsu-Czech Bilateral Co-Funding R&D Project(No.BZ2023011)the Fundamental Research Funds for the Central Universities(No.B220204002).
文摘Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
基金funded by the Research Foundation of Education Bureau of Hunan Province,China,under Grant Number 21B0060the National Natural Science Foundation of China,under Grant Number 61701179.
文摘Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3DGait)represented by a set of interpretable 3DGait descriptors based on a 3D parametric body model.The 3DGait descriptors are utilised as invariant gait features in the 3DGait recognition method to address object carrying and dressing.The 3DGait recognitionmethod involves 2-dimensional(2D)to 3DGaitdata learningbasedon3Dvirtual samples,a semantic gait parameter estimation Long Short Time Memory(LSTM)network(3D-SGPE-LSTM),a feature fusion deep model based on a multi-set canonical correlation analysis,and SoftMax recognition network.First,a sensory experiment based on 3D body shape and pose deformation with 3D virtual dressing is used to fit 3DGait onto the given 2D gait images.3Dinterpretable semantic parameters control the 3D morphing and dressing involved.Similarity degree measurement determines the semantic descriptors of 2D gait images of subjects with various shapes,poses and styles.Second,using the 2D gait images as input and the subjects’corresponding 3D semantic descriptors as output,an end-to-end 3D-SGPE-LSTM is constructed and trained.Third,body shape,pose and external gait factors(3D-eFactors)are estimated using the 3D-SGPE-LSTM model to create a set of interpretable gait descriptors to represent the 3DGait Model,i.e.,3D intrinsic semantic shape descriptor(3DShape);3D skeleton-based gait pose descriptor(3D-Pose)and 3D dressing with other 3D-eFators.Finally,the 3D-Shape and 3D-Pose descriptors are coupled to a unified pattern space by learning prior knowledge from the 3D-eFators.Practical research on CASIA B,CMU MoBo,TUM GAID and GPJATK databases shows that 3DGait is robust against object carrying and dressing variations,especially under multi-cross variations.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFF0708903)Ningbo Municipal Key Technology Research and Development Program of China(Grant No.2022Z006)Youth Fund of National Natural Science Foundation of China(Grant No.52205043)。
文摘Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.
基金supported by the National Natural Science Foundation of China(No.52271367).
文摘In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of motion is very meaningful to realize trajectory prediction and adaptive motion control of the USV. An interactive identification algorithm (ESO–MILS, extended state observer–multi-innovation least squares) based on ESO is proposed. The robustness of online identification is improved by expanding the state observer to estimate the current disturbance without making artificial assumptions. Specifically, the three-degree-of-freedom dynamic equation of the double propeller propulsion USV is constructed. A linear model for online identification is derived by parameterization. Based on the least square criterion function, it is proved that the interactive identification method with disturbance estimation can improve the identification accuracy from the perspective of mathematical expectation. The extended state observer is designed to estimate the unknown disturbance in the model. The online interactive update improves the disturbance immunity of the identification algorithm. Finally, the effectiveness of the interactive identification algorithm is verified by simulation experiment and real ship experiment.