The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein Maxwell theory with p Abelian gauge fields (EM-p theory, for short), Two EHC structural...The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein Maxwell theory with p Abelian gauge fields (EM-p theory, for short), Two EHC structural Riemann- Hilbert (RH) transformations are constructed and are then shown to give an infinite-dimensional symmetry group of the EM-p theory. This symmetry group is verified to have the structure of semidirect product of Kac-Moody group SU(p + 1, 1) and Virasoro group. Moreover, the infinitesimal forms of these two RH transformations are calculated and found to give exactly the same infinitesimal transformations as in previous author's paper by a different scheme, This demonstrates that the results obtained in the present paper provide some exponentiations of all the infinitesimal symmetry transformations obtained before.展开更多
The sparse distribution characteristics of renewable energy resources can lead to there being tens of kilometers of transmission lines between a grid-connected inverter and the actual grid.Accurate analysis of the sta...The sparse distribution characteristics of renewable energy resources can lead to there being tens of kilometers of transmission lines between a grid-connected inverter and the actual grid.Accurate analysis of the stability of such gridconnected inverter systems currently involves using a complex hyperbolic function to shaped model of the transmission line circuit.This has proved to be problematic,so,drawing upon the distribution parameter characteristics of transmission lines,this paper looks at how to use impedance-based stability criteria to assess the stability of multi-paralleled grid-connected inverters.First,the topology of multi-paralleled inverters connected to the grid via transmission lines is established,using each transmission line terminal as a grid connection point.Each grid-connected system is taken to be equivalent to a small-signal circuit model of the“current source-grid”.Euler’s formula and the Nyquist stability criterion are combined to assess the stability of the associated grid-connected current transfer functions and evaluate the stability of the grid-connected current.Finally,a simulation analysis circuit is constructed to verify whether power line intervention will cause stability problems in the grid-connected system.Overall,it is found that long-distance transmission lines are more likely to cause unstable output of the grid-connected current.It is also found that the number of grid-connected inverters,the short-circuit ratio(SCR),the distorted grid and the inverter parameters can all have a significant impact on the stability of the grid-connected current.展开更多
基金Project supported by the Science Foundation from Education Department of Liaoning Province, China (Grant No 202142036) and the National Natural Science Foundation of China (Grant No 10475036).
文摘The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein Maxwell theory with p Abelian gauge fields (EM-p theory, for short), Two EHC structural Riemann- Hilbert (RH) transformations are constructed and are then shown to give an infinite-dimensional symmetry group of the EM-p theory. This symmetry group is verified to have the structure of semidirect product of Kac-Moody group SU(p + 1, 1) and Virasoro group. Moreover, the infinitesimal forms of these two RH transformations are calculated and found to give exactly the same infinitesimal transformations as in previous author's paper by a different scheme, This demonstrates that the results obtained in the present paper provide some exponentiations of all the infinitesimal symmetry transformations obtained before.
文摘The sparse distribution characteristics of renewable energy resources can lead to there being tens of kilometers of transmission lines between a grid-connected inverter and the actual grid.Accurate analysis of the stability of such gridconnected inverter systems currently involves using a complex hyperbolic function to shaped model of the transmission line circuit.This has proved to be problematic,so,drawing upon the distribution parameter characteristics of transmission lines,this paper looks at how to use impedance-based stability criteria to assess the stability of multi-paralleled grid-connected inverters.First,the topology of multi-paralleled inverters connected to the grid via transmission lines is established,using each transmission line terminal as a grid connection point.Each grid-connected system is taken to be equivalent to a small-signal circuit model of the“current source-grid”.Euler’s formula and the Nyquist stability criterion are combined to assess the stability of the associated grid-connected current transfer functions and evaluate the stability of the grid-connected current.Finally,a simulation analysis circuit is constructed to verify whether power line intervention will cause stability problems in the grid-connected system.Overall,it is found that long-distance transmission lines are more likely to cause unstable output of the grid-connected current.It is also found that the number of grid-connected inverters,the short-circuit ratio(SCR),the distorted grid and the inverter parameters can all have a significant impact on the stability of the grid-connected current.