This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global ...This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.展开更多
Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it i...Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it is necessary to establish a precise mechanical model and develop a control algorithm with high precision.However,with the application of traditional control strategies,the RSSFS often suffers from the chattering phenomenon,which will aggravate structure vibration.In this paper,novel deformation description is put forward to balance modeling accuracy and computational efficiency of the RSSFS,which is better appropriate for real-time control.Besides,the Neural Network Sliding Mode Control(NNSMC)strategy modified by the hyperbolic tangent(tanh)function is put forward to compensate for modeling errors and reduce the chattering phenomenon,thereby improving the trajectory tracking accuracy of the RSSFS.Firstly,a mathematical model for the RSSFS is developed according to the novel deformation description and the vibration theory of flexible structure.Comparison of the deformation accuracy between different models proves that the novel modeling method proposed has high modeling accuracy.Next,the universal approximation property of the Radial Basis Function(RBF)neural network is put forward to determine and compensate for modeling errors,which consist of higher-order modes and the uncertainties of external disturbances.In addition,the tanh function is proposed as the reaching law in the conventional NNSMC strategy to suppress driving torque oscillation.The control law of modified NNSMC strategy and the adaptive law of weight coefficients are developed according to the Lyapunov theorem to guarantee the RSSFS stability.Finally,the simulation and physical experimental tests of the RSSFS with different control strategies are conducted.Experimental results show that the control law according to the novel deformation description and the modified NNSMC strategy can obtain accurate tracking of the rotation and reduce the vibration of the RSSFS simultaneously.展开更多
In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equat...In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.展开更多
针对目前定步长和变步长最小均方(Least Mean Square,LMS)算法在设计低通滤波器时面临稳态精度和响应速度二者无法同时保障的问题,设计了一种基于改进变步长LMS算法的自适应滤波器。为获得较高的稳态精度和响应速度,该算法设计过程中引...针对目前定步长和变步长最小均方(Least Mean Square,LMS)算法在设计低通滤波器时面临稳态精度和响应速度二者无法同时保障的问题,设计了一种基于改进变步长LMS算法的自适应滤波器。为获得较高的稳态精度和响应速度,该算法设计过程中引入了改进双曲正切函数用以实现对步长因子及误差信号的连续调节。利用MATLAB/Simulink仿真软件对改进变步长LMS算法下的自适应滤波器进行仿真验证。结果表明,在该算法下设计的滤波器不仅能够响应速度快,而且还能获得较高的稳态精度。展开更多
高光谱图像异常检测作为一种无监督的目标检测,主要存在异常目标类型多样化、异常与背景不易区分、以及检测精度受场景影响大等难题。针对以上问题,本文提出了一种基于空谱多路自编码器的高光谱图像异常检测方法。首先,提出一种加权空谱...高光谱图像异常检测作为一种无监督的目标检测,主要存在异常目标类型多样化、异常与背景不易区分、以及检测精度受场景影响大等难题。针对以上问题,本文提出了一种基于空谱多路自编码器的高光谱图像异常检测方法。首先,提出一种加权空谱Gabor滤波方法,提取高光谱图像的多尺度空谱特征;其次,采用多路自编码器降低多尺度空谱特征在光谱维的冗余度,提取空谱特征中的主要信息;最后,利用得到的主要空谱特征,结合形态学滤波与双曲正切函数进行特征增强,以提高异常与背景噪声的区分度。本文提出的方法是一种即插即用的异常检测方法,无需额外的参数输入;多路自编码器提取了多尺度主要空谱特征,以应对异常目标类型多样化的难题;通过特征增强提高了背景与异常的区分度。将本文提出的方法与9种流行的异常检测方法相比,在5个高光谱数据集上进行验证,通过对比异常检测结果图、接收机操作特性(Receiver Operating Characteristic,ROC)曲线、ROC曲线下覆盖的面积AUC(Area Under Curve)以及异常像元与背景像元的箱型图等评价指标,证明了本文方法优于其他9种方法。展开更多
基金supported by the National Natural Science Foundation of China(62073019)。
文摘This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.
基金Supported by the Applied Basic Research Program of Liaoning Province,China(No.2023JH2/101300159)the National Natural Science Foundation of China(No.52275090).
文摘Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it is necessary to establish a precise mechanical model and develop a control algorithm with high precision.However,with the application of traditional control strategies,the RSSFS often suffers from the chattering phenomenon,which will aggravate structure vibration.In this paper,novel deformation description is put forward to balance modeling accuracy and computational efficiency of the RSSFS,which is better appropriate for real-time control.Besides,the Neural Network Sliding Mode Control(NNSMC)strategy modified by the hyperbolic tangent(tanh)function is put forward to compensate for modeling errors and reduce the chattering phenomenon,thereby improving the trajectory tracking accuracy of the RSSFS.Firstly,a mathematical model for the RSSFS is developed according to the novel deformation description and the vibration theory of flexible structure.Comparison of the deformation accuracy between different models proves that the novel modeling method proposed has high modeling accuracy.Next,the universal approximation property of the Radial Basis Function(RBF)neural network is put forward to determine and compensate for modeling errors,which consist of higher-order modes and the uncertainties of external disturbances.In addition,the tanh function is proposed as the reaching law in the conventional NNSMC strategy to suppress driving torque oscillation.The control law of modified NNSMC strategy and the adaptive law of weight coefficients are developed according to the Lyapunov theorem to guarantee the RSSFS stability.Finally,the simulation and physical experimental tests of the RSSFS with different control strategies are conducted.Experimental results show that the control law according to the novel deformation description and the modified NNSMC strategy can obtain accurate tracking of the rotation and reduce the vibration of the RSSFS simultaneously.
基金Supported by the National Natural Science Foundation of China(61179041,61272023,and 11401388)
文摘In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.
文摘针对目前定步长和变步长最小均方(Least Mean Square,LMS)算法在设计低通滤波器时面临稳态精度和响应速度二者无法同时保障的问题,设计了一种基于改进变步长LMS算法的自适应滤波器。为获得较高的稳态精度和响应速度,该算法设计过程中引入了改进双曲正切函数用以实现对步长因子及误差信号的连续调节。利用MATLAB/Simulink仿真软件对改进变步长LMS算法下的自适应滤波器进行仿真验证。结果表明,在该算法下设计的滤波器不仅能够响应速度快,而且还能获得较高的稳态精度。
文摘高光谱图像异常检测作为一种无监督的目标检测,主要存在异常目标类型多样化、异常与背景不易区分、以及检测精度受场景影响大等难题。针对以上问题,本文提出了一种基于空谱多路自编码器的高光谱图像异常检测方法。首先,提出一种加权空谱Gabor滤波方法,提取高光谱图像的多尺度空谱特征;其次,采用多路自编码器降低多尺度空谱特征在光谱维的冗余度,提取空谱特征中的主要信息;最后,利用得到的主要空谱特征,结合形态学滤波与双曲正切函数进行特征增强,以提高异常与背景噪声的区分度。本文提出的方法是一种即插即用的异常检测方法,无需额外的参数输入;多路自编码器提取了多尺度主要空谱特征,以应对异常目标类型多样化的难题;通过特征增强提高了背景与异常的区分度。将本文提出的方法与9种流行的异常检测方法相比,在5个高光谱数据集上进行验证,通过对比异常检测结果图、接收机操作特性(Receiver Operating Characteristic,ROC)曲线、ROC曲线下覆盖的面积AUC(Area Under Curve)以及异常像元与背景像元的箱型图等评价指标,证明了本文方法优于其他9种方法。