Thin structures are generally solved by the Finite Element Method(FEM), using plate or shell finite elements which have manylimitations in applications, such as numerical locking, edge effects,length scaling and the c...Thin structures are generally solved by the Finite Element Method(FEM), using plate or shell finite elements which have manylimitations in applications, such as numerical locking, edge effects,length scaling and the cnvergence problem. Recently, by proposing anew approach to tranting the nearly- singular integrals, Liu et al.developed a BEM to successfully solve thin structures with thethickness-to- length ratios in the micro-or nano-scales. On the otherhand, the meshless Regular Hybrid Boundary Node Method (RHBNM), whichis proposed by the current authors and based on a modified functionaland the Moving Least-Square (MLS) approximation, has very promisingapplications for engineering problems owing To its meshless natureand dimension-reduction advantage, and not involving any singular ornearly-singular Integrals. Test examples show that the RHBNM can alsobe applied readily to thin structures with high accu- Racy withoutany modification.展开更多
文摘Thin structures are generally solved by the Finite Element Method(FEM), using plate or shell finite elements which have manylimitations in applications, such as numerical locking, edge effects,length scaling and the cnvergence problem. Recently, by proposing anew approach to tranting the nearly- singular integrals, Liu et al.developed a BEM to successfully solve thin structures with thethickness-to- length ratios in the micro-or nano-scales. On the otherhand, the meshless Regular Hybrid Boundary Node Method (RHBNM), whichis proposed by the current authors and based on a modified functionaland the Moving Least-Square (MLS) approximation, has very promisingapplications for engineering problems owing To its meshless natureand dimension-reduction advantage, and not involving any singular ornearly-singular Integrals. Test examples show that the RHBNM can alsobe applied readily to thin structures with high accu- Racy withoutany modification.