期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
1
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
在线阅读 下载PDF
An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering 被引量:11
2
作者 Taher NIKNAM Babak AMIRI +1 位作者 Javad OLAMAEI Ali AREFI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期512-519,共8页
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper prop... The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms. 展开更多
关键词 Simulated annealing (SA) Data clustering hybrid evolutionary optimization algorithm K-means clustering Parti-cle swarm optimization (PSO)
原文传递
Biological Network Modeling Based on Hill Function and Hybrid Evolutionary Algorithm
3
作者 Sanrong Liu Haifeng Wang 《国际计算机前沿大会会议论文集》 2019年第2期192-194,共3页
Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a H... Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods. 展开更多
关键词 Gene REGULATORY network HILL FUNCTION GREY WOLF optimization hybrid evolutionary algorithm Ordinary differential equation
在线阅读 下载PDF
A Hybrid Algorithm Based on PSO and GA for Feature Selection 被引量:1
4
作者 Yu Xue Asma Aouari +1 位作者 Romany F.Mansour Shoubao Su 《Journal of Cyber Security》 2021年第2期117-124,共8页
One of the main problems of machine learning and data mining is to develop a basic model with a few features,to reduce the algorithms involved in classification’s computational complexity.In this paper,the collection... One of the main problems of machine learning and data mining is to develop a basic model with a few features,to reduce the algorithms involved in classification’s computational complexity.In this paper,the collection of features has an essential importance in the classification process to be able minimize computational time,which decreases data size and increases the precision and effectiveness of specific machine learning activities.Due to its superiority to conventional optimization methods,several metaheuristics have been used to resolve FS issues.This is why hybrid metaheuristics help increase the search and convergence rate of the critical algorithms.A modern hybrid selection algorithm combining the two algorithms;the genetic algorithm(GA)and the Particle Swarm Optimization(PSO)to enhance search capabilities is developed in this paper.The efficacy of our proposed method is illustrated in a series of simulation phases,using the UCI learning array as a benchmark dataset. 展开更多
关键词 evolutionary computation genetic algorithm hybrid approach META-HEURISTIC feature selection particle swarm optimization
在线阅读 下载PDF
An Evolutionary Algorithm with Multi-Local Search for the Resource-Constrained Project Scheduling Problem
5
作者 Zhi-Jie Chen Chiuh-Cheng Chyu 《Intelligent Information Management》 2010年第3期220-226,共7页
This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable dec... This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality. 展开更多
关键词 RESOURCE-CONSTRAINED Project SCHEDULING evolutionary algorithmS Local SEARCH hybridIZATION
在线阅读 下载PDF
A Novel Quantum - inspired Multi - Objective Evolutionary Algorithm Based on Cloud Theory
6
作者 Bo Xu~1 Wang Cheng~2 Jian-Ping Yu~3 Yong Wang~4 (1.Department of Computer Science and Technology,Guangdong University of Petrochemical Technology,Maoming,Guangdong,525000) (2.Wells Fargo Bank,USA) (3.College of Mathematics and Computer Science,Hunan Normal University,Changsha,410081) (4.College of Electrical and Information Engineering,Hunan University,Changsha,410082) 《自动化博览》 2011年第S2期145-150,共6页
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the ... In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ. 展开更多
关键词 MULTI-OBJECTIVE Optimization PROBLEM quantum-inspired MULTI-OBJECTIVE evolutionary algorithm CLOUD Model evolutionary algorithm
在线阅读 下载PDF
A Bi-Level Optimization Model and Hybrid Evolutionary Algorithm for Wind Farm Layout with Different Turbine Types
7
作者 Erping Song Zipin Yao 《Energy Engineering》 2025年第12期5129-5147,共19页
Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and eco... Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm. 展开更多
关键词 Bi-level optimization genetic algorithm differential evolution hybrid evolutionary algorithm wind farm layout
在线阅读 下载PDF
考虑分层耦合约束的复杂产品综合调度算法
8
作者 巴智勇 袁逸萍 +1 位作者 李明 阿地兰木·斯塔洪 《计算机集成制造系统》 北大核心 2025年第3期965-983,共19页
针对具有分层耦合约束的复杂产品综合调度问题,提出一种多样性控制的混合进化算法(HEA-DC)。首先从理论层面分析了工序移动的可行判定条件,设计了一种保证可行性的邻域结构;其次,在算法设计方面,提出一种基于工序约束度的编码方法,以保... 针对具有分层耦合约束的复杂产品综合调度问题,提出一种多样性控制的混合进化算法(HEA-DC)。首先从理论层面分析了工序移动的可行判定条件,设计了一种保证可行性的邻域结构;其次,在算法设计方面,提出一种基于工序约束度的编码方法,以保证所有初始解的可行性;同时,设计了满足复杂产品加工装配顺序约束的交叉算子。此外,为避免算法过早收敛,引入了基于邻域惩罚的种群更新策略。最后,通过与当前5种先进算法测试结果进行对比,验证了所提算法在求解质量与稳定性方面的优势,并更新了11个算例的已知最优解。 展开更多
关键词 综合调度 混合进化算法 邻域结构 多样性控制
在线阅读 下载PDF
基于图染色混合进化算法的长期多智能体任务分配
9
作者 师晓妍 袁培燕 +2 位作者 张俊娜 黄婷 龚月姣 《计算机科学》 北大核心 2025年第7期262-270,共9页
多智能体任务分配问题是智能仓储领域的关键底层问题。该问题要求将持续到来的任务分配给可用的智能体,以最小化整体任务的平均周期时间。针对该长期多智能体任务分配问题,首先将其数学建模为图染色问题,利用考虑冲突关系的图表征任务... 多智能体任务分配问题是智能仓储领域的关键底层问题。该问题要求将持续到来的任务分配给可用的智能体,以最小化整体任务的平均周期时间。针对该长期多智能体任务分配问题,首先将其数学建模为图染色问题,利用考虑冲突关系的图表征任务与智能体之间的关联性。基于该问题模型,为了最小化所有任务的平均周期时间,提出结合启发式算法、禁忌搜索算法和遗传算法的图染色混合进化算法(Graph Coloring Hybrid Evolutionary Algorithm, GCHEA),利用启发式算法生成初始解,以有效引导搜索过程;引入禁忌表,避免候选解在寻优过程中陷入局部最优;利用遗传算法的选择、交叉和替换操作增强种群多样性,通过迭代优化得到全局最优解;最终提出算法GCHEA获得图染色方案并进一步解码为具体的任务-智能体的分配方案。在仿真系统上进行测试,实验结果表明,GCHEA与现有的任务分配算法相比,在任务平均周期时间和系统总延误时间这两个性能指标上均取得了显著的改进。具体来说,任务平均周期时间平均减少了49%左右,系统总延误时间平均减少了约50%。 展开更多
关键词 智能仓储 长期多智能体任务分配 图染色问题 混合进化算法
在线阅读 下载PDF
集成工人和AGV的多要素柔性作业车间调度方法
10
作者 方遒 宋豪杰 +2 位作者 卢弘 毛建旭 王耀南 《机械工程学报》 北大核心 2025年第18期330-343,共14页
面向集成多种生产要素的智能车间,实现各类资源高效调度以完成任务,对提高生产效率具有重要意义和价值。针对一类考虑多要素的柔性作业车间调度问题,提出一种高效的混合进化算法。首先,基于对问题背景和多要素运行情况的分析,以最小化... 面向集成多种生产要素的智能车间,实现各类资源高效调度以完成任务,对提高生产效率具有重要意义和价值。针对一类考虑多要素的柔性作业车间调度问题,提出一种高效的混合进化算法。首先,基于对问题背景和多要素运行情况的分析,以最小化最大完工时间为目标,构建了含工件、机器、AGV和工人四种生产要素的柔性作业车间调度模型。然后,针对模型中不同决策变量的特点,提出结合启发式和随机式的混合初始化策略,以生成高质量的初始种群。根据个体的四层编码结构,设计基于经典遗传算子的全局搜索方法。针对易于陷入局部最优解的困境,提出记忆机制导向的多邻域局部搜索方法,以增强算法的局部搜索能力。最后,基于标准测试集生成了多组适用的算例,并设计一系列试验以验证算法的性能。试验结果表明,混合初始化策略和多邻域局部搜索能够有效地改善算法性能。与领域中多种先进的算法比较,所提算法在调度方案质量上更具优越性。 展开更多
关键词 多生产要素 柔性作业车间调度 混合进化算法 启发式初始化 多邻域局部搜索
原文传递
基于混合决策机制的自适应生产调度优化与仿真
11
作者 纪志成 全震 王艳 《系统仿真学报》 北大核心 2025年第7期1791-1803,共13页
为求解以最大完工时间、平均延迟时间、瓶颈机器加工负载率为目标的柔性生产调度优化问题,针对机器分配与任务排序的决策复杂度与约束特征,提出了以二维染色体编码机器分配、启发式规则评估任务排序优先级的混合决策机制调度算法,以增... 为求解以最大完工时间、平均延迟时间、瓶颈机器加工负载率为目标的柔性生产调度优化问题,针对机器分配与任务排序的决策复杂度与约束特征,提出了以二维染色体编码机器分配、启发式规则评估任务排序优先级的混合决策机制调度算法,以增强对决策优化的适应水平。为了进一步改善所提调度方法的性能,制定了以等待调度任务所需加工时长分布为依据的自适应规则策略,实现决策对调度场景的动态适应性,提升全局优化的综合优势水平。实验结果表明:该方法提高了调度问题求解的寻优效率,提供更加占据主导地位的非支配解集。 展开更多
关键词 柔性生产调度 混合决策机制 自适应规则策略 进化算法 遗传规划超启发式
原文传递
文化基因算法(Memetic Algorithm)研究进展 被引量:37
12
作者 刘漫丹 《自动化技术与应用》 2007年第11期1-4,18,共5页
文化基因算法(memetic algorithm)是Pablo Moscato提出的建立在模拟文化进化基础上的优化算法,它实质上是一种基于种群的全局搜索和基于个体的局部启发式搜索的结合体。文化基因算法的概念被提出后,已被越来越多的研究人员接受和采纳。... 文化基因算法(memetic algorithm)是Pablo Moscato提出的建立在模拟文化进化基础上的优化算法,它实质上是一种基于种群的全局搜索和基于个体的局部启发式搜索的结合体。文化基因算法的概念被提出后,已被越来越多的研究人员接受和采纳。本文主要介绍了文化基因算法的起源、实现过程,以及在各类优化问题中的应用情况。 展开更多
关键词 文化基因算法 进化计算 混合算法
在线阅读 下载PDF
大规模公共卫生事件下城市即时配送网络优化模型与算法
13
作者 孟令鹏 王旭东 韩传峰 《同济大学学报(自然科学版)》 北大核心 2025年第2期296-305,共10页
大规模公共卫生事件下城市即时配送存在路网数据失真、供需侧信息不确定及网络中断问题,亟需考虑信息不确定性及路网中断可能性进行城市即时配送网络优化。首先,考虑封控导致道路限行下的路网构建问题,建立城市底层路网并提出改进的Floy... 大规模公共卫生事件下城市即时配送存在路网数据失真、供需侧信息不确定及网络中断问题,亟需考虑信息不确定性及路网中断可能性进行城市即时配送网络优化。首先,考虑封控导致道路限行下的路网构建问题,建立城市底层路网并提出改进的Floyd算法;其次,针对开放式多配送点的城市即时配送问题,考虑供需不确定性及设施服务中断问题,使用蒙特卡洛模拟方法构造情景树,建立多目标随机规划模型并设计混合进化算法求解;最后,以2022年上海新冠肺炎疫情事件为例,发现大规模公共卫生事件导致配送设施服务能力、路网容量及客户需求突变,配送系统容易因供需不匹配而发生“爆单”“爆仓”,但一方面设施服务中断未必导致配送成本增加,而是通过降低客户满意度来增加总成本,另一方面更多的车辆使用数目未必导致总成本增加。 展开更多
关键词 大规模公共卫生事件 中断 即时配送 多目标随机规划模型 蒙特卡洛模拟 混合进化算法
在线阅读 下载PDF
大规模突发事件下基于“派单+抢单”的平台配送模式优化模型
14
作者 刘柳 孟令鹏 《物流科技》 2025年第1期34-38,62,共6页
大规模突发事件会导致平台配送面临订单模糊、车辆配送路网复杂、取送货序列配对困难等现实问题。文章提出一种基于平台“派单+抢单”的组合运营模式,充分发挥派单模式高效匹配配送员-订单,以及抢单模式有效提升平台配送灵活性的优势,... 大规模突发事件会导致平台配送面临订单模糊、车辆配送路网复杂、取送货序列配对困难等现实问题。文章提出一种基于平台“派单+抢单”的组合运营模式,充分发挥派单模式高效匹配配送员-订单,以及抢单模式有效提升平台配送灵活性的优势,以配送成本最低、客户满意度最高为优化目标,建立多目标混合整数规划模型,并设计基于GA-SA的混合进化算法对配货员的配送路径进行合理规划,保障商家、客户多对关系下的货物取送有序。数值实验表明,所设计的优化算法能够有效解决抢单模式下的即时配送车辆路径问题,具有很好的效率和应用性。 展开更多
关键词 大规模公共事件 即时配送 多目标规划模型 混合进化算法
在线阅读 下载PDF
混合匹配模型下自适应紧凑进化算法
15
作者 许诏云 吕青 乔钰博 《计算机工程与设计》 北大核心 2025年第8期2149-2156,共8页
为了解决本体匹配模型在集成多种相似度量方法的同时无法查找匹配对之间语义关系的问题,提出了一种新的本体混合模型,通过建立一种新的相似度量方法,将模型的元匹配参数和实体匹配参数进行关联。此外,利用紧凑进化算法的思想,设置了一... 为了解决本体匹配模型在集成多种相似度量方法的同时无法查找匹配对之间语义关系的问题,提出了一种新的本体混合模型,通过建立一种新的相似度量方法,将模型的元匹配参数和实体匹配参数进行关联。此外,利用紧凑进化算法的思想,设置了一个自适应步长调整策略。通过种群历史信息和个体适应度值自适应增减步长以确定当前最优步长。算法运行了Ontology Alignment Evaluation Initiative的benchmark测试集,并将实验结果与其它算法进行比较,验证了算法的运行速度与优化质量均优于其它算法。 展开更多
关键词 本体匹配 本体元匹配 本体实体匹配 紧凑进化算法 自适应步长 相似度量 混合模型
在线阅读 下载PDF
Hamming-distance-based adaptive quantum-inspired evolutionary algorithm for network coding resources optimization 被引量:10
16
作者 Qu Zhijian Liu Xiaohong +2 位作者 Zhang Xianwei Xie Yinbao Li Caihong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2015年第3期92-99,共8页
An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was... An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was taken into consideration, and a suitable rotation angle step (RAS) was assigned to each individual according to the Hamming distance. Performance comparisons were conducted among the HD-QEA, a basic quantum-inspired evolutionary algorithm (QEA) and an individual's fitness based adaptive QEA. A solid demonstration was provided that the proposed HD-QEA is better than the other two algorithms in terms of the convergence speed and the global optimization capability when they are employed to optimize the network coding resources in multicast networks. 展开更多
关键词 network coding quantum-inspired evolutionary algorithm Hamming distance multicast network
原文传递
A Rule Based Evolutionary Optimization Approach for the Traveling Salesman Problem
17
作者 Wissam M. Alobaidi David J. Webb Eric Sandgren 《Intelligent Information Management》 2017年第4期115-132,共18页
The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many exi... The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many existing algorithms, a traditional genetic algorithm will have limited success with this problem class, particularly as the problem size increases. A rule based genetic algorithm is proposed and demonstrated on sets of traveling salesman problems of increasing size. The solution character as well as the solution efficiency is compared against a simulated annealing technique as well as a standard genetic algorithm. The rule based genetic algorithm is shown to provide superior performance for all problem sizes considered. Furthermore, a post optimal analysis provides insight into which rules were successfully applied during the solution process which allows for rule modification to further enhance performance. 展开更多
关键词 TRAVELING SALESMAN evolutionary OPTIMIZATION RULE Based Search HEURISTIC OPTIMIZATION hybrid Genetic algorithm
在线阅读 下载PDF
Hybrid Optimization of a Valveless Diaphragm Micropump Using the Cut-Cell Method
18
作者 kapsoulis K.Samouchos +1 位作者 X.Trompoukis K.Giannakoglou 《Journal of Mechanics Engineering and Automation》 2019年第4期120-127,共8页
This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaph... This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaphragm that generates the unsteady flow within the device.The optimization,which is related exclusively to the diaphragm motion,aims at maximizing the net flowrate and minimizing the backflow at the outlet diffuser.All CFD analyses are performed using an in-house cut-cell method,based on the finite volume approach,on a many-processor system.To reduce the optimization turn-around time,two optimization methods,a gradient-free evolutionary algorithm enhanced by surrogate evaluation models and a gradient-based(GB)method are synergistically used.To support the GB optimization,the continuous adjoint method that computes the gradient of the objectives with respect to the design variables has been developed and programmed.Using the hybrid optimization method,the Pareto front of non-dominated solutions,in the two-objective space,is computed.Finally,a couple of optimal solutions selected from the computed Pareto front are re-evaluated by considering uncertainties in the operating conditions;these are quantified using the polynomial chaos expansion method. 展开更多
关键词 DIAPHRAGM MICROPUMP cut-cell METHOD hybrid optimization ADJOINT METHOD evolutionary algorithm uncertaintyquantification
在线阅读 下载PDF
Hybrid Improved Self-adaptive Differential Evolution and Nelder-Mead Simplex Method for Solving Constrained Real-Parameters
19
作者 Ngoc-Tam Bui Hieu Pham Hiroshi Hasegawa 《Journal of Mechanics Engineering and Automation》 2013年第9期551-559,共9页
In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-... In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints. 展开更多
关键词 Differential evolution hybrid algorithms evolutionary computation global search local search simplex method.
在线阅读 下载PDF
基于建筑信息模型的装配式建筑施工能耗均衡的进度优化 被引量:12
20
作者 王乾坤 申楚雄 +1 位作者 郭曾 段宏磊 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2024年第4期446-452,共7页
综合装配式建筑施工阶段的能耗均衡项目调度问题和实际施工时进度管理的需求,提出了网络进度计划下基于建筑信息模型和混合进化算法的施工进度优化模型。以网络进度计划作为施工进度管理的载体,其中建筑信息模型用于处理装配式建筑施工... 综合装配式建筑施工阶段的能耗均衡项目调度问题和实际施工时进度管理的需求,提出了网络进度计划下基于建筑信息模型和混合进化算法的施工进度优化模型。以网络进度计划作为施工进度管理的载体,其中建筑信息模型用于处理装配式建筑施工能耗量化问题,混合进化算法用于处理装配式建筑施工能耗均衡问题,提出了基于非关键任务的能耗均衡的施工进度优化方法。用python语言编程可快速准确地获得能耗均衡的施工进度计划。结果表明,该进度优化方法能有效地量化施工能耗并进行均衡优化,为管理者提供进度管理决策支持。 展开更多
关键词 进度优化 能耗均衡 建筑信息模型 混合进化算法 网络进度计划
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部