This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and eco...Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm.展开更多
The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject...The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.展开更多
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal...Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.展开更多
The presence of cracks in a concrete structure reduces its performance and increases in the size of cracks result in the failure of the structure.Therefore,the accurate determination of crack characteristics,such as l...The presence of cracks in a concrete structure reduces its performance and increases in the size of cracks result in the failure of the structure.Therefore,the accurate determination of crack characteristics,such as location and depth,is one of the key engineering issues for assessment of the reliability of structures.This paper deals with the inverse analysis of the crack detection problems using triple hybrid algorithms based on Particle Swarm Optimization(PSO);these hybrids are Particle Swarm Optimization-Genetic Algorithm-Firefly Algorithm(PSO-GA-FA),Particle Swarm Optimization-Grey Wolf Optimization-Firefly Algorithm(PSO-GWO-FA),and Particle Swarm Optimization-Genetic Algorithm-Grey Wolf Optimization(PSO-GA-GWO).A strong correlation exists between the changes in the natural frequency of a concrete beam and the crack parameters.Thus,the location and depth of a crack in a beam can be predicted by measuring its natural frequency.Hence,the measured natural frequency can be used as the input parameter of the algorithm.In this paper,this is applied to identify crack location and depth in a cantilever beam using the new hybrid algorithms.The results show that among the proposed triple hybrid algorithms,the PSO-GA-FA and PSO-GWO-FA algorithms are much more effective than PSO-GA-GWO algorithm for the crack detection.展开更多
The aim of the current work is to compare susceptibility maps of landslides produced using machine learning techniques i.e.multilayer perception neural nets(MLP),kernel logistic regression(KLR),random forest(RF),and m...The aim of the current work is to compare susceptibility maps of landslides produced using machine learning techniques i.e.multilayer perception neural nets(MLP),kernel logistic regression(KLR),random forest(RF),and multivariate adaptive regression splines(MARS);novel ensemble approaches i.e.MLP-Bagging,KLR-Bagging,RFBagging and MARS-Bagging in the Kurseong-Himalayan region.For the ensemble models the RF,KLR,MLP and MARS were used as base classifiers,and Bagging was used as meta classifier.Another objective of the current work is to introduce and evaluate the effectiveness of the novel KLR-Bagging and MARS-Bagging ensembles in susceptibility to landslide.Compiling 303 landslide locations to calibrate and test the models,an inventory map was created.Eighteen LCFs were chosen using the Relief-F and multi-collinearity tests for mapping the landslide susceptibility.Applying receiver operating characteristic(ROC),precision,accuracy,incorrectly categorized proportion,mean-absolute-error(MAE),and root-mean-square-error(RMSE),the LSMs were subsequently verified.The different validation results showed RF-Bagging(AUC training 88.69%&testing 92.28%)with ensemble Meta classifier gives better performance than the MLP,KLR,RF,MARS,MLP-Bagging,KLR-Bagging,and MARSBagging based LSMs.RF model showed that the slope,altitude,rainfall,and geomorphology played the most vital role in landslide occurrence comparing the other LCFs.These results will help to reduce the losses caused by the landslides in the Kurseong and in other areas where geo-environmental and geological conditions more or less similar.展开更多
Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and r...Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and resource management becomes paramount.At the core of this efficiency lies task scheduling,a complex process that determines how tasks are allocated and executed across cloud resources.While extensive research has been conducted in the area of task scheduling,optimizing multiple objectives simultaneously remains a significant challenge due to the NP(Non-deterministic Polynomial)Complete nature of the problem.This study aims to address these challenges by providing a comprehensive review and experimental analysis of task scheduling approaches,with a particular focus on hybrid techniques that offer promising solutions.Utilizing the CloudSim simulation toolkit,we evaluated the performance of three hybrid algorithms:Estimation of Distribution Algorithm-Genetic Algorithm(EDA-GA),Hybrid Genetic Algorithm-Ant Colony Optimization(HGA-ACO),and Improved Discrete Particle Swarm Optimization(IDPSO).Our experimental results demonstrate that these hybrid methods significantly outperform traditional standalone algorithms in reducing Makespan,which is a critical measure of task completion time.Notably,the IDPSO algorithm exhibited superior performance,achieving a Makespan of just 0.64 milliseconds for a set of 150 tasks.These findings underscore the potential of hybrid algorithms to enhance task scheduling efficiency in cloud computing environments.This paper concludes with a discussion of the implications of our findings and offers recommendations for future research aimed at further improving task scheduling strategies,particularly in the context of increasingly complex and dynamic cloud environments.展开更多
Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on f...Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on forecasting daily stock market returns,especially when using powerful machine learning techniques,such as deep neural networks(DNNs),to perform the analyses.DNNs employ various deep learning algorithms based on the combination of network structure,activation function,and model parameters,with their performance depending on the format of the data representation.This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF(ticker symbol:SPY)based on 60 financial and economic features.DNNs and traditional artificial neural networks(ANNs)are then deployed over the entire preprocessed but untransformed dataset,along with two datasets transformed via principal component analysis(PCA),to predict the daily direction of future stock market index returns.While controlling for overfitting,a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000.Moreover,a set of hypothesis testing procedures are implemented on the classification,and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset,as well as several other hybrid machine learning algorithms.In addition,the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested,including in a comparison against two standard benchmarks.展开更多
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit...Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.展开更多
In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy com...In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.展开更多
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro...The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.展开更多
Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization...Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
Water infiltration into soil is an important process in hydrologic cycle;however,its measurement is difficult,time-consuming and costly.Empirical and physical models have been developed to predict cumulative infiltrat...Water infiltration into soil is an important process in hydrologic cycle;however,its measurement is difficult,time-consuming and costly.Empirical and physical models have been developed to predict cumulative infiltration(CI),but are often inaccurate.In this study,several novel standalone machine learning algorithms(M5Prime(M5P),decision stump(DS),and sequential minimal optimization(SMO))and hybrid algorithms based on additive regression(AR)(i.e.,AR-M5P,AR-DS,and AR-SMO)and weighted instance handler wrapper(WIHW)(i.e.,WIHW-M5P,WIHW-DS,and WIHW-SMO)were developed for CI prediction.The Soil Conservation Service(SCS)model developed by the United States Department of Agriculture(USDA),one of the most popular empirical models to predict CI,was considered as a benchmark.Overall,154 measurements of CI(explanatory/input variables)were taken from 16 sites in a semi-arid region of Iran(Illam and Lorestan provinces).Six input variable combinations were considered based on Pearson correlations between candidate model inputs(time of measuring and soil bulk density,moisture content,and sand,clay,and silt percentages)and CI.The dataset was divided into two subgroups at random:70%of the data were used for model building(training dataset)and the remaining 30%were used for model validation(testing dataset).The various models were evaluated using different graphical approaches(bar charts,scatter plots,violin plots,and Taylor diagrams)and quantitative measures(root mean square error(RMSE),mean absolute error(MAE),Nash-Sutcliffe efficiency(NSE),and percent bias(PBIAS)).Time of measuring had the highest correlation with CI in the study area.The best input combinations were different for different algorithms.The results showed that all hybrid algorithms enhanced the CI prediction accuracy compared to the standalone models.The AR-M5P model provided the most accurate CI predictions(RMSE=0.75 cm,MAE=0.59 cm,NSE=0.98),while the SCS model had the lowest performance(RMSE=4.77 cm,MAE=2.64 cm,NSE=0.23).The differences in RMSE between the best model(AR-M5P)and the second-best(WIHW-M5P)and worst(SCS)were 40%and 84%,respectively.展开更多
The objectives of this study involve the optimization of longitudinal porous fins of square cross-section using metaheuristic algorithms.A generalized nonlinear ordinary differential equation is derived using Darcy an...The objectives of this study involve the optimization of longitudinal porous fins of square cross-section using metaheuristic algorithms.A generalized nonlinear ordinary differential equation is derived using Darcy and Fourier’s laws in the energy balance around a control volume and is solved numerically using RFK 45 method.The temperature of the base surface is higher than the fin surface,and the fin tip is kept adiabatic or cooled by convection heat transfer.The other pertinent parameters include Rayleigh number(100≤Ra≤10^(4)),Darcy number,(10^(−4)≤Da≤10^(−2)),relative thermal conductivity ratio of solid phase to fluid(1000≤kr≤8000),Nusselt number(10≤Nu≤100),porosity(0.1≤φ≤0.9).The impacts of these parameters on the entropy generation rate are investigated and optimized using metaheuristic algorithms.In computer science,metaheuristic algorithms are one of the most widely used techniques for optimization problems.In this research,three metaheuristic algorithms,including the firefly algorithm(FFA),particle swarm algorithm(PSO),and hybrid algorithm(FFAPSO)are employed to examine the performance of square fins.It is demonstrated that FFA-PSO takes fewer iterations and less computational time to converge compared to other algorithms.展开更多
This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous ...This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.展开更多
To reduce the vibration of the Coaxial Helicopter Main Transmission System(CHMTS)considering both level and vertical flight conditions,a vibration evaluation and optimization model for the CHMTS was built.The vibratio...To reduce the vibration of the Coaxial Helicopter Main Transmission System(CHMTS)considering both level and vertical flight conditions,a vibration evaluation and optimization model for the CHMTS was built.The vibration simulation model of the CHMTS was set up by gear dynamics theory and loaded contact analysis.For better evaluation of the system vibration,a vibration evaluation method for the CHMTS was established by the G1 method-variation coefficient method.A hybrid Gravitational Search Algorithm-Simulated Annealing(GSA-SA)algorithm was combined to balance convergence speed and searching accuracy.The principle test was conducted to prove the accuracy of theoretical method,in which the maximum relative error is16.26%.The optional results show that the vibration of the optimized transmission system decreases significantly,in which the maximum reduction of key vibration indicators reaches more than 20%.The theoretical results have been compared to the experiment to verify the effectiveness of the vibration optimization method.The proposed method could be extended to other fields.展开更多
The structural integrity monitoring of high-density polyethylene(HDPE)geomembranes in landfill containment systems presents a critical engineering challenge due to the material’s vulnerability to mechanical degradati...The structural integrity monitoring of high-density polyethylene(HDPE)geomembranes in landfill containment systems presents a critical engineering challenge due to the material’s vulnerability to mechanical degradation and the complex vibration propagation characteristics in large-scale installations.This study proposes a dual-stream deep learning framework that synergistically integrates raw vibration signal analysis with physics-guided feature extraction to achieve precise rupture detection and localization.Themethodology employs a hierarchical neural architecture comprising two parallel branches:a 1D convolutional network processing raw accelerometer signals to capture multi-scale temporal patterns,and a physics-informed branch extracting material-specific resonance features through continuous wavelet transform(CWT)and energy ratio quantification.A novel gated attention mechanism dynamically fuses these heterogeneous modalities,adaptively weighting their contributions based on localized signal characteristics—prioritizing high-frequency transient features near damage zones while emphasizing physics-derived energy anomalies in intact regions.Spatial correlations among distributed sensors aremodeled via graph convolutional networks(GCNs)that incorporate geometric topology and vibration transmission dynamics,enabling robust anomaly propagation analysis.展开更多
As the proportion of natural gas consumption in the energy market gradually increases,optimizing the design of gas storage surface system(GSSS)has become a current research focus.Existing studies on the two independen...As the proportion of natural gas consumption in the energy market gradually increases,optimizing the design of gas storage surface system(GSSS)has become a current research focus.Existing studies on the two independent injection pipeline network(InNET)and production pipeline network(ProNET)for underground natural gas storage(UNGS)are scarce,and no optimization methods have been proposed yet.Therefore,this paper focuses on the flow and pressure boundary characteristics of the GSSS.It constructs systematic models,including the injection multi-condition coupled model(INM model),production multi-condition coupled model(PRM model),injection single condition model(INS model)and production single condition model(PRS model)to optimize the design parameters.Additionally,this paper proposes a hybrid genetic algorithm based on generalized reduced gradient(HGA-GRG)for solving the models.The models and algorithm are applied to a case study with the objective of minimizing the cost of the pipeline network.For the GSSS,nine different condition scenarios are considered,and iterative process analysis and sensitivity analysis of these scenarios are conducted.Moreover,simulation scenarios are set up to verify the applicability of different scenarios to the boundaries.The research results show that the cost of the InNET considering the coupled pressure boundary is 64.4890×10^(4) CNY,and the cost of the ProNET considering coupled flow and pressure boundaries is 87.7655×10^(4) CNY,demonstrating greater applicability and economy than those considering only one or two types of conditions.The algorithms and models proposed in this paper provide an effective means for the design of parameters for GSSS.展开更多
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
基金supported by the National Natural Science Foundation of China[Grant No.12461035]Qinghai University Students Innovative Training Program Project[2024-QX-57].
文摘Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm.
基金the National Natural Science Foundation of China,grant numbers 51704253 and 52474084.
文摘The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.
文摘Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.
文摘The presence of cracks in a concrete structure reduces its performance and increases in the size of cracks result in the failure of the structure.Therefore,the accurate determination of crack characteristics,such as location and depth,is one of the key engineering issues for assessment of the reliability of structures.This paper deals with the inverse analysis of the crack detection problems using triple hybrid algorithms based on Particle Swarm Optimization(PSO);these hybrids are Particle Swarm Optimization-Genetic Algorithm-Firefly Algorithm(PSO-GA-FA),Particle Swarm Optimization-Grey Wolf Optimization-Firefly Algorithm(PSO-GWO-FA),and Particle Swarm Optimization-Genetic Algorithm-Grey Wolf Optimization(PSO-GA-GWO).A strong correlation exists between the changes in the natural frequency of a concrete beam and the crack parameters.Thus,the location and depth of a crack in a beam can be predicted by measuring its natural frequency.Hence,the measured natural frequency can be used as the input parameter of the algorithm.In this paper,this is applied to identify crack location and depth in a cantilever beam using the new hybrid algorithms.The results show that among the proposed triple hybrid algorithms,the PSO-GA-FA and PSO-GWO-FA algorithms are much more effective than PSO-GA-GWO algorithm for the crack detection.
文摘The aim of the current work is to compare susceptibility maps of landslides produced using machine learning techniques i.e.multilayer perception neural nets(MLP),kernel logistic regression(KLR),random forest(RF),and multivariate adaptive regression splines(MARS);novel ensemble approaches i.e.MLP-Bagging,KLR-Bagging,RFBagging and MARS-Bagging in the Kurseong-Himalayan region.For the ensemble models the RF,KLR,MLP and MARS were used as base classifiers,and Bagging was used as meta classifier.Another objective of the current work is to introduce and evaluate the effectiveness of the novel KLR-Bagging and MARS-Bagging ensembles in susceptibility to landslide.Compiling 303 landslide locations to calibrate and test the models,an inventory map was created.Eighteen LCFs were chosen using the Relief-F and multi-collinearity tests for mapping the landslide susceptibility.Applying receiver operating characteristic(ROC),precision,accuracy,incorrectly categorized proportion,mean-absolute-error(MAE),and root-mean-square-error(RMSE),the LSMs were subsequently verified.The different validation results showed RF-Bagging(AUC training 88.69%&testing 92.28%)with ensemble Meta classifier gives better performance than the MLP,KLR,RF,MARS,MLP-Bagging,KLR-Bagging,and MARSBagging based LSMs.RF model showed that the slope,altitude,rainfall,and geomorphology played the most vital role in landslide occurrence comparing the other LCFs.These results will help to reduce the losses caused by the landslides in the Kurseong and in other areas where geo-environmental and geological conditions more or less similar.
文摘Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and resource management becomes paramount.At the core of this efficiency lies task scheduling,a complex process that determines how tasks are allocated and executed across cloud resources.While extensive research has been conducted in the area of task scheduling,optimizing multiple objectives simultaneously remains a significant challenge due to the NP(Non-deterministic Polynomial)Complete nature of the problem.This study aims to address these challenges by providing a comprehensive review and experimental analysis of task scheduling approaches,with a particular focus on hybrid techniques that offer promising solutions.Utilizing the CloudSim simulation toolkit,we evaluated the performance of three hybrid algorithms:Estimation of Distribution Algorithm-Genetic Algorithm(EDA-GA),Hybrid Genetic Algorithm-Ant Colony Optimization(HGA-ACO),and Improved Discrete Particle Swarm Optimization(IDPSO).Our experimental results demonstrate that these hybrid methods significantly outperform traditional standalone algorithms in reducing Makespan,which is a critical measure of task completion time.Notably,the IDPSO algorithm exhibited superior performance,achieving a Makespan of just 0.64 milliseconds for a set of 150 tasks.These findings underscore the potential of hybrid algorithms to enhance task scheduling efficiency in cloud computing environments.This paper concludes with a discussion of the implications of our findings and offers recommendations for future research aimed at further improving task scheduling strategies,particularly in the context of increasingly complex and dynamic cloud environments.
文摘Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on forecasting daily stock market returns,especially when using powerful machine learning techniques,such as deep neural networks(DNNs),to perform the analyses.DNNs employ various deep learning algorithms based on the combination of network structure,activation function,and model parameters,with their performance depending on the format of the data representation.This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF(ticker symbol:SPY)based on 60 financial and economic features.DNNs and traditional artificial neural networks(ANNs)are then deployed over the entire preprocessed but untransformed dataset,along with two datasets transformed via principal component analysis(PCA),to predict the daily direction of future stock market index returns.While controlling for overfitting,a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000.Moreover,a set of hypothesis testing procedures are implemented on the classification,and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset,as well as several other hybrid machine learning algorithms.In addition,the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested,including in a comparison against two standard benchmarks.
文摘Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.
文摘In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.
文摘The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.
基金appreciation to King Saud University for funding this research through the Researchers Supporting Program number(RSPD2024R918),King Saud University,Riyadh,Saudi Arabia.
文摘Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
文摘Water infiltration into soil is an important process in hydrologic cycle;however,its measurement is difficult,time-consuming and costly.Empirical and physical models have been developed to predict cumulative infiltration(CI),but are often inaccurate.In this study,several novel standalone machine learning algorithms(M5Prime(M5P),decision stump(DS),and sequential minimal optimization(SMO))and hybrid algorithms based on additive regression(AR)(i.e.,AR-M5P,AR-DS,and AR-SMO)and weighted instance handler wrapper(WIHW)(i.e.,WIHW-M5P,WIHW-DS,and WIHW-SMO)were developed for CI prediction.The Soil Conservation Service(SCS)model developed by the United States Department of Agriculture(USDA),one of the most popular empirical models to predict CI,was considered as a benchmark.Overall,154 measurements of CI(explanatory/input variables)were taken from 16 sites in a semi-arid region of Iran(Illam and Lorestan provinces).Six input variable combinations were considered based on Pearson correlations between candidate model inputs(time of measuring and soil bulk density,moisture content,and sand,clay,and silt percentages)and CI.The dataset was divided into two subgroups at random:70%of the data were used for model building(training dataset)and the remaining 30%were used for model validation(testing dataset).The various models were evaluated using different graphical approaches(bar charts,scatter plots,violin plots,and Taylor diagrams)and quantitative measures(root mean square error(RMSE),mean absolute error(MAE),Nash-Sutcliffe efficiency(NSE),and percent bias(PBIAS)).Time of measuring had the highest correlation with CI in the study area.The best input combinations were different for different algorithms.The results showed that all hybrid algorithms enhanced the CI prediction accuracy compared to the standalone models.The AR-M5P model provided the most accurate CI predictions(RMSE=0.75 cm,MAE=0.59 cm,NSE=0.98),while the SCS model had the lowest performance(RMSE=4.77 cm,MAE=2.64 cm,NSE=0.23).The differences in RMSE between the best model(AR-M5P)and the second-best(WIHW-M5P)and worst(SCS)were 40%and 84%,respectively.
基金supported by the Deanship of Scientific Research/Saudi Electronic University[Research No.7704-CAI-2019-1-2-r].Initials of authors who received the grant:S.H.AtawnehN.N.HamadnehW.A.Khan.
文摘The objectives of this study involve the optimization of longitudinal porous fins of square cross-section using metaheuristic algorithms.A generalized nonlinear ordinary differential equation is derived using Darcy and Fourier’s laws in the energy balance around a control volume and is solved numerically using RFK 45 method.The temperature of the base surface is higher than the fin surface,and the fin tip is kept adiabatic or cooled by convection heat transfer.The other pertinent parameters include Rayleigh number(100≤Ra≤10^(4)),Darcy number,(10^(−4)≤Da≤10^(−2)),relative thermal conductivity ratio of solid phase to fluid(1000≤kr≤8000),Nusselt number(10≤Nu≤100),porosity(0.1≤φ≤0.9).The impacts of these parameters on the entropy generation rate are investigated and optimized using metaheuristic algorithms.In computer science,metaheuristic algorithms are one of the most widely used techniques for optimization problems.In this research,three metaheuristic algorithms,including the firefly algorithm(FFA),particle swarm algorithm(PSO),and hybrid algorithm(FFAPSO)are employed to examine the performance of square fins.It is demonstrated that FFA-PSO takes fewer iterations and less computational time to converge compared to other algorithms.
基金This research was funded by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16_019 /0000867by the Ministry of Education of the Czech Republic, Project No. SP2021/32.
文摘This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.
基金funded by the National Natural Science Foundation of China(No.52105060)the Special Transmission Project,China(No.KY-1044-2023-0458)。
文摘To reduce the vibration of the Coaxial Helicopter Main Transmission System(CHMTS)considering both level and vertical flight conditions,a vibration evaluation and optimization model for the CHMTS was built.The vibration simulation model of the CHMTS was set up by gear dynamics theory and loaded contact analysis.For better evaluation of the system vibration,a vibration evaluation method for the CHMTS was established by the G1 method-variation coefficient method.A hybrid Gravitational Search Algorithm-Simulated Annealing(GSA-SA)algorithm was combined to balance convergence speed and searching accuracy.The principle test was conducted to prove the accuracy of theoretical method,in which the maximum relative error is16.26%.The optional results show that the vibration of the optimized transmission system decreases significantly,in which the maximum reduction of key vibration indicators reaches more than 20%.The theoretical results have been compared to the experiment to verify the effectiveness of the vibration optimization method.The proposed method could be extended to other fields.
基金supported by the Research and Talent Development Base for Intelligent Monitoring,Early Warning,and Emergency Management of Major Environmental Risk Sources in the Yellow River Basin(24RCXM58)Research and Demonstration of Key Technologies for Long-Term Service and Smart Operation of Major Environmental Safety Infrastructure(Solid and Hazardous Wastes)in the Yellow River Basin(24ZYQA025).
文摘The structural integrity monitoring of high-density polyethylene(HDPE)geomembranes in landfill containment systems presents a critical engineering challenge due to the material’s vulnerability to mechanical degradation and the complex vibration propagation characteristics in large-scale installations.This study proposes a dual-stream deep learning framework that synergistically integrates raw vibration signal analysis with physics-guided feature extraction to achieve precise rupture detection and localization.Themethodology employs a hierarchical neural architecture comprising two parallel branches:a 1D convolutional network processing raw accelerometer signals to capture multi-scale temporal patterns,and a physics-informed branch extracting material-specific resonance features through continuous wavelet transform(CWT)and energy ratio quantification.A novel gated attention mechanism dynamically fuses these heterogeneous modalities,adaptively weighting their contributions based on localized signal characteristics—prioritizing high-frequency transient features near damage zones while emphasizing physics-derived energy anomalies in intact regions.Spatial correlations among distributed sensors aremodeled via graph convolutional networks(GCNs)that incorporate geometric topology and vibration transmission dynamics,enabling robust anomaly propagation analysis.
基金funded by the National Natural Science Foun-dation of China,grant number 51704253 and 52474084。
文摘As the proportion of natural gas consumption in the energy market gradually increases,optimizing the design of gas storage surface system(GSSS)has become a current research focus.Existing studies on the two independent injection pipeline network(InNET)and production pipeline network(ProNET)for underground natural gas storage(UNGS)are scarce,and no optimization methods have been proposed yet.Therefore,this paper focuses on the flow and pressure boundary characteristics of the GSSS.It constructs systematic models,including the injection multi-condition coupled model(INM model),production multi-condition coupled model(PRM model),injection single condition model(INS model)and production single condition model(PRS model)to optimize the design parameters.Additionally,this paper proposes a hybrid genetic algorithm based on generalized reduced gradient(HGA-GRG)for solving the models.The models and algorithm are applied to a case study with the objective of minimizing the cost of the pipeline network.For the GSSS,nine different condition scenarios are considered,and iterative process analysis and sensitivity analysis of these scenarios are conducted.Moreover,simulation scenarios are set up to verify the applicability of different scenarios to the boundaries.The research results show that the cost of the InNET considering the coupled pressure boundary is 64.4890×10^(4) CNY,and the cost of the ProNET considering coupled flow and pressure boundaries is 87.7655×10^(4) CNY,demonstrating greater applicability and economy than those considering only one or two types of conditions.The algorithms and models proposed in this paper provide an effective means for the design of parameters for GSSS.