期刊文献+
共找到3,950篇文章
< 1 2 198 >
每页显示 20 50 100
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
1
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
Quantitative principles of dynamic interaction between rock support and surrounding rock in rockburst roadways 被引量:3
2
作者 Lianpeng Dai Dingjie Feng +4 位作者 Yishan Pan Aiwen Wang Ying Ma Yonghui Xiao Jianzhuo Zhang 《International Journal of Mining Science and Technology》 2025年第1期41-55,共15页
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe... Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices. 展开更多
关键词 Deep roadway ROCKBURST dynamic interaction Rock support Surrounding rock Rockburst control
在线阅读 下载PDF
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
3
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
在线阅读 下载PDF
Correction:Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG
4
作者 Sofiia Moraresku Jiri Hammer +6 位作者 Vasileios Dimakopoulos Michaela Kajsova Radek Janca Petr Jezdik Adam Kalina Petr Marusic Kamil Vlcek 《Neuroscience Bulletin》 2025年第9期1709-1709,共1页
Correction to:Neuroscience Bulletin https://doi.org/10.1007/s12264-025-01371-x In this article the affiliation"Department of Circuit Theory,Faculty of Electrical Engineering,Czech Technical University in Prague,M... Correction to:Neuroscience Bulletin https://doi.org/10.1007/s12264-025-01371-x In this article the affiliation"Department of Circuit Theory,Faculty of Electrical Engineering,Czech Technical University in Prague,Member of the Epilepsy Research Centre Prague-EpiReC Consortium,Prague,Czechia"should only be assigned to Radek Janca and Petr Jezdik.It is removed from the authors:Jiri Hammer,Michaela Kajsova,Adam Kalina,Petr Marusic,and Kamil Vlcek. 展开更多
关键词 visual stream interactions memory guided actions neural dynamics neuroscience intracranial EEG
原文传递
Rheological behaviors of Na-montmorillonite considering particle interactions:A molecular dynamics study
5
作者 Siqi Zhang Daoyuan Tan +2 位作者 Honghu Zhu Huafu Pei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4657-4671,共15页
Understanding the rheology of bentonite suspensions is crucial for ensuring the safety of engineering practices.However,the rheological mechanisms of bentonite remain unclear due to the limitations of conventional exp... Understanding the rheology of bentonite suspensions is crucial for ensuring the safety of engineering practices.However,the rheological mechanisms of bentonite remain unclear due to the limitations of conventional experimental techniques,particularly in assessing the microscopic interactions between clay particles and their impact on rheological properties.In this paper,the rheological behaviors of Namontmorillonite were studied with a focus on interparticle interactions.Both equilibrium molecular dynamics(MD)and non-equilibrium MD simulations were conducted to understand the physical properties of Na-montmorillonite under zero shear and various shear rates,respectively.The interaction between two parallel clay particles was determined in simulations,indicating that the classical Darjaguin-Landau-Verwey-Overbeek(DLVO)theory underestimates the interactions for a small separation distance.Na-montmorillonite exhibits a typical shear thinning behavior under shearing.However,as water content increases,it begins to behave more like liquid water.The yield stress of montmorillonite,as determined by the Bingham model,was found to be linearly related to the interaction pressures between clay particles.Besides MD simulations,the microstructure of clay suspension was further quantified using the separation distance and incline angle between non-parallel clay particles.Based on MD results and the quantified clay structure,a model was developed to estimate the yield stress of montmorillonite considering various influence factors,including electrolyte concentration,temperature,and solid fraction.Finally,from a comparison with calculated and experimental data,the results confirm the good performance of the proposed model.These findings provide significant insights for understanding the rheological soil behaviors and evaluating the yield stress of bentonite suspensions. 展开更多
关键词 Rheological behavior Yield stress Molecular dynamics Particle interactions Darjaguin-Landau-Verwey-Overbeek(DLVO)theory Microstructure Montmorillonite suspension
在线阅读 下载PDF
Modulation of d-d orbital interactions in Ti-Ni-N_(4)coordination introduces dynamic bonding for enhanced CO_(2)photoreduction
6
作者 Song-Song Zhi Xiao-Xiao Zou +6 位作者 Jin-Ye Lei Lu Zhang Zi-Han Li Wan-Nuo Gu Fahim Ullah Hong Guo Da-Peng Wu 《Rare Metals》 2025年第10期7464-7475,共12页
Photocatalytic CO_(2)reduction using atomically dispersed catalysts holds significant potential for addressing global energy and environmental challenges.However,the influence of d-d orbital interactions between metal... Photocatalytic CO_(2)reduction using atomically dispersed catalysts holds significant potential for addressing global energy and environmental challenges.However,the influence of d-d orbital interactions between metal centers and coordinated atoms remains under explored.Herein,nickel phthalocyanine is anchored to the metalexposed crystal face of TiO_(2),forming Ti-Ni-N_(4)coordination.This configuration reveals that the axially coordinated Ti atoms serve as a novel electron channel with electron-donating ability,transferring electrons to the Ni center through d-d coupling.It is found that the dynamic adjustment of bond lengths and d-band centers in Ti-Ni bonding during CO_(2)photoreduction process can effectively modulate the adsorption strengths of the Ni center for different intermediates.This leads to a significant enhancement in the photocatalytic performance for CO_(2)reduction to CO without a sacrificial reagent,achieving an exceptional CO evolution rate of 378.5μmol g^(-1).Furthermore,the d-d coupling mediated by Ti-Ni-N_(4)coordination increases the vacancy formation energy of active sites,preventing the leaching of Ni active centers.This study provides a strategy for the precise design of d-d orbital regulation and resistance to demetallization in photocatalysts for efficient CO_(2)conversion. 展开更多
关键词 d-d orbital interaction dynamic bonding Ni demetallization Photocatalytic CO_(2)reduction
原文传递
Soliton Interactions and Collision Dynamics in a Variable-Coefficient Coupled Nonlocal Nonlinear Schrödinger Systems
7
作者 Xinnan Cui Zhiyang Zhang +2 位作者 Muwei Liu Fenghua Qi Wenjun Liu 《Chinese Physics Letters》 2025年第10期68-74,共7页
The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations ... The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems. 展开更多
关键词 two soliton solutions soliton interactions assigning different functions collision dynamics nonstandard hirota bilinear methodthe nonstandard hirota bilinear method variable coefficient coupled nonlocal nonlinear schr dinger systems coupled nonlocal nonlinear schr dinger equations variable coefficients
原文传递
Seismic wave input method for three-dimensional soil-structure dynamic interaction analysis based on the substructure of artificial boundaries 被引量:18
8
作者 Liu Jingbo Tan Hui +2 位作者 Bao Xin Wang Dongyang Li Shutao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期747-758,共12页
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident... The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves. 展开更多
关键词 soil-structure dynamic interaction SEISMIC WAVE INPUT WAVE method EQUIVALENT INPUT SEISMIC loads SUBSTRUCTURE of artifi cial boundaries
在线阅读 下载PDF
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:21
9
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (CFD) fluid-structure interaction (FSI) journal bearing
在线阅读 下载PDF
Elastic responses of underground circular arches considering dynamic soil-structure interaction:A theoretical analysis 被引量:12
10
作者 Hai-Long Chen Feng-Nian Jin Hua-Lin Fan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第1期110-122,共13页
Due to the wide applications of arches in underground protective structures, dynamic analysis of circular arches including soil-structure interactions is important. In this paper, an exact solution of the forced vibra... Due to the wide applications of arches in underground protective structures, dynamic analysis of circular arches including soil-structure interactions is important. In this paper, an exact solution of the forced vibration of circular arches subjected to subsurface denotation forces is obtained. The dynamic soil-structure interaction is considered with the introduction of an interfacial damping between the structure element and the surrounding soil into the equa- tion of motion. By neglecting the influences of shear, rotary inertia and tangential forces and assuming the arch incompressible, the equations of motion of the buried arches were set up. Analytical solutions of the dynamic responses of the protective arches were deduced by means of modal super- position. Arches with different opening angles, acoustic impedances and rise-span ratios were analyzed to discuss their influences on an arch. The theoretical analysis suggests blast loads for elastic designs and predicts the potential failure modes for buried protective arches. 展开更多
关键词 Underground protective arches - dynamic soilstructure interaction dynamic responses Analytical solution
在线阅读 下载PDF
Human Interaction Dynamics for Its Use in Mobile Robotics:Impedance Control for Leader-follower Formation 被引量:12
11
作者 Daniel Herrera Flavio Roberti +1 位作者 Marcos Toibero Ricardo Carelli 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期696-703,共8页
A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In thi... A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction. 展开更多
关键词 Human modeling human-machine interaction impedance control robot dynamics social robotics
在线阅读 下载PDF
Molecular Dynamics Simulations of the Interactions Between Konjac Glucomannan and Soy Protein Isolate 被引量:7
12
作者 WANG Meng YAO Min-na +2 位作者 JIAN Wen-lie SUN Yu-jing PANG Jie 《Agricultural Sciences in China》 CAS CSCD 2010年第10期1538-1542,共5页
The interactions between konjac glucomannan(KGM) and soy protein isolate (SPI) were studied with the method of molecular dynamics simulation. Part representative structures segments of KGM and SPI were used as mod... The interactions between konjac glucomannan(KGM) and soy protein isolate (SPI) were studied with the method of molecular dynamics simulation. Part representative structures segments of KGM and SPI were used as mode, and the force-field was FF03. The stability and sites of KGM/SPI interactions in water were researched at 363 K with the following results: the potential energy (EPOT) of the mixed gel dropped, while that of single KGM gel increased. The surface area (SA) of KGM in the mixed system was decreased to 401.41 from 1 267.54 Az, and that of SPI to 484.94 from 1 943.28 A2. The sum potential energy of KGM and soy protein in the mixed system was decreased to -13 402.41 from -5 768.56 kcal mol^-1. The variations of two parameters showed that the stability of compound gel KGM/SPI was improved, which was consistent with the previous studies. The sites of interactions in the mixed gel were the -OH groups on C(2) in KGM mannose and glucose, and the amide linkage group on Histidine, Asparagine and Leucine in SPI. The hydrogen bond was formed directly or indirectly by the bridge of waters. 展开更多
关键词 KGM SPI molecular dynamics simulation interaction
在线阅读 下载PDF
Thematic Tour Interactive Experience Platform Empowered by Dynamic Path Planning and Augmented Reality:An Empirical Study on Enhancing Visitor Engagement and Cultural Identity
13
作者 Li Shen Yueying Huang +1 位作者 Jinxin Wang Xiaowen Ye 《Journal of Electronic Research and Application》 2025年第6期427-434,共8页
This study focuses on the application of dynamic route planning and augmented reality(AR)technology within interactive theme trail platforms.Taking the“Dongpo Travelogue”digital guide mini-program as a case study,it... This study focuses on the application of dynamic route planning and augmented reality(AR)technology within interactive theme trail platforms.Taking the“Dongpo Travelogue”digital guide mini-program as a case study,it employs empirical analysis to explore its impact on enhancing visitor engagement and cultural identification.Employing a combined quantitative and qualitative methodology,the study analyses the platform’s functional implementation in route planning,cultural narration,interactive games,and their impact on visitor experience.Findings indicate that the integration of dynamic route planning and AR technology significantly enhances visitor engagement and cultural identity,offering novel insights for the digital transformation of the cultural tourism industry. 展开更多
关键词 dynamic route planning Themed trails interactive experience Cultural identity
在线阅读 下载PDF
CFD Analysis of Ship-to-Ship Hydrodynamic Interaction 被引量:4
14
作者 A.D.Wnek Serge Sutulo C.Guedes Soares 《Journal of Marine Science and Application》 CSCD 2018年第1期21-37,共17页
A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code,and the results are compared with experimental data and with the results of a panel method analysis.Two ship models have be... A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code,and the results are compared with experimental data and with the results of a panel method analysis.Two ship models have been used in the interaction forces analysis:a tug and a tanker,advancing parallel to each other with different lateral distances and two different values of the fluid depth.Computations are carried out with four different flow models:inviscid and viscous flow with the free surface modeled as a rigid wall and inviscid and viscous flow with the deformable free surface.A fair agreement was obtained with available experimental data and results obtained by panel method.The influence of viscosity in the computations is found to be comparatively weak,while the wavemaking effects may be important,at small magnitude of the horizontal clearance. 展开更多
关键词 HYDROdynamic interaction Computational fluid dynamics(CFD) Flow model Comparative COMPUTATIONS Ship-to-ship interaction Shallow water
在线阅读 下载PDF
Dynamic soil-tunnel interaction in layered half-space for incident plane SH waves 被引量:8
15
作者 Fu Jia Liang Jianwen Qin Lin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期715-727,共13页
The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subj... The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction. 展开更多
关键词 underground tunnel layered half-space plane SH wave indirect boundary element method soil-tunnel interaction site dynamic characteristics
在线阅读 下载PDF
Molecular Dynamics Simulations of the Interactions between Konjac Glucomannan and Carrageenan 被引量:5
16
作者 孙玉敬 叶兴乾 +2 位作者 庞杰 李俊 吕元 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第4期439-444,共6页
The interactions between konjac glucomannan and carrageenan were studied with the method of molecular dynamics simulation. Part representative structure segments of KGM and two unit structures of κ-carrageenan (Fig... The interactions between konjac glucomannan and carrageenan were studied with the method of molecular dynamics simulation. Part representative structure segments of KGM and two unit structures of κ-carrageenan (Fig. 2) were used as mode, and the force-field was AMBER2. The stability and sites of konjac glucomannan/carrageenan interactions in water were researched at 373 K with the following results: the potential energy (EPOT) of the mixed gel was dropped, while those of single-konjac glucomannan gel and single carrageenan were increased. The surface area (SA) of KGM in the mixed system was decreased to 1002.2A^°^2, and that of carrageenan to 800.9 A^°^2. The variations of two parameters showed that the stability of compound gel konjac glucomannan/carrageenan was improved, which is consistent with the previous studies. The sites of interactions in the mixed gel were the -OH groups on C(2), C(4) and C(6), the acetyl group in KGM mannose, and the -OH group on C(6) in carrageenan. The hydrogen bond was formed directly or indirectly by the bridge of waters. 展开更多
关键词 konjae glueomannan earrageenan molecular dynamics simulation interaction
在线阅读 下载PDF
Dynamic Analysis of Tension Leg Platform for Offshore Wind Turbine Support as Fluid-Structure Interaction 被引量:5
17
作者 黄虎 张社荣 《China Ocean Engineering》 SCIE EI 2011年第1期123-131,共9页
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics ... Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics of the TLP for offshore wind turbine support are recognized. As shown by the calculated results: for the lower modes, the shapes are water's vibration, and the vibration of water induces the structure's swing; the mode shapes of the structure are complex, and can largely change among different members; the mode shapes of the platform are related to the tower's. The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform; the TLP has good adaptability for the water depths and the environment loads. The change of the size and parameters of TLP can improve the dynamic characteristics, which can reduce the vibration of the TLP caused by the loads. Through the vibration analysis, the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads, and thus the resonance vibration can be avoided, therefore the offshore wind turbine can work normally in the complex conditions. 展开更多
关键词 offshore wind turbine tension leg platform fluid structure interaction dynamic characteristics yaw resonance vibration
在线阅读 下载PDF
Dynamic interaction numerical models in the time domain based on the high performance scaled boundary finite element method 被引量:5
18
作者 Li Jianbo Liu Jun Lin Gao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期541-546,共6页
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ... Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model. 展开更多
关键词 time domain analysis dynamic interaction acceleration impulse response function scaled boundary finiteelement method viscoelastic boundary
在线阅读 下载PDF
Dynamic interaction of twin vertically overlapping lined tunnels in an elastic half space subjected to incident plane waves 被引量:6
19
作者 Zhongxian Liu Yirui Wang Jianwen Liang 《Earthquake Science》 CSCD 2016年第3期185-201,共17页
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the... The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel. 展开更多
关键词 Vertically overlapping lined tunnels Scattering Indirect boundary integration equation method(IBIEM) Soil-tunnel dynamic interaction
在线阅读 下载PDF
Dynamic Analysis of the Seafloor Pilot Miner Based on Single-Body Vehicle Model and Discretized Track-Terrain Interaction Model 被引量:5
20
作者 戴瑜 刘少军 李力 《China Ocean Engineering》 SCIE EI 2010年第1期145-160,共16页
In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with som... In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with some subsystems to form the complete integrated deep ocean mining pilot system and perform dynamic analysis, a new method for the dynamic modeling and analysis of the miner is proposed and developed in this paper, resulting in a simplified 3D single-body vehicle model with three translational and three rotational degrees of freedom, while the track-terrain interaction model is built by partitioning the track-terrain interface into discrete elements with parameterized force dements built on the theory of terramechanics acting on each discrete dement. To evaluate and verify the correctness and effectiveness of this new modeling and analysis method, typical comparative studies with regard to computational efficiency and solution accuracy are carried out between the traditional modeling method of building the tracked vehicle as a multi-body model and the new modeling method. In full consideration of the particMar structure design of the pilot miner, the special characteristics of the seafioor soil and the hydrodynamic force of near-seafloor currnt, the dynamic simulation analysis of the miner is performed and discussed, which can provide useful guidance and reference for the practical miner system in design and operation. This new method can not only realize the rapid dynamic simulation analysis of the miner but also make possible the integration and rapid dynamic analysis of the complete integrated deep ocean mining pilot system in further researches. 展开更多
关键词 deep-ocean mining system self-propelled seafloor pilot miner single-body model multi-body model discretized track-terrain interaction model dynamic analysis
在线阅读 下载PDF
上一页 1 2 198 下一页 到第
使用帮助 返回顶部