In this paper, a new control system based on forearm electromyogram (EMG) is proposed for computer peripheral control and artificial prosthesis control. This control system intends to realize the commands of six pre...In this paper, a new control system based on forearm electromyogram (EMG) is proposed for computer peripheral control and artificial prosthesis control. This control system intends to realize the commands of six pre-defined hand poses: up, down, left, right, yes, and no. In order to research the possibility of using a unified amplifier for both electroencephalogram (EEG) and EMG, the surface forearm EMG data is acquired by a 4-channel EEG measurement system. The Bayesian classifier is used to classify the power spectral density (PSD) of the signal. The experiment result verifies that this control system can supply a high command recognition rate (average 48%) even the EMG data is collected with an EEG system just with single electrode measurement.展开更多
In recent years, computer assisted surgery (CAS) systems become more and more common in clinical practices, but few specific design criteria have been proposed for human-computer interface (HCI) in GAS systems. Th...In recent years, computer assisted surgery (CAS) systems become more and more common in clinical practices, but few specific design criteria have been proposed for human-computer interface (HCI) in GAS systems. This paper tried to give universal criteria of HCI design for CAS systems through introduction of demonstration application, which is total knee replacement (TKR) with a nonimage-based navigation system. A typical computer assisted process can be divided into four phases: the preoperative planning phase, the intraoperative registration phase, the intraoperative navigation phase and finally the postoperative assessment phase. The interface design for four steps is described respectively in the demonstration application. These criteria this paper summarized can be useful to software developers to achieve reliable and effective interfaces for new CAS systems more easily.展开更多
In this review, five graphical user interfaces(GUIs) used in radiation therapy practices and researches are introduced. They are:(1) the treatment time calculator, superficialx-ray treatment time calculator(SUPCALC) u...In this review, five graphical user interfaces(GUIs) used in radiation therapy practices and researches are introduced. They are:(1) the treatment time calculator, superficialx-ray treatment time calculator(SUPCALC) used in the superficial X-ray radiation therapy;(2) the monitor unit calculator, electron monitor unit calculator(EMUC) used in the electron radiation therapy;(3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy(SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy;(4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and(5) the monitor unit calculator, photon beam monitor unit calculator(PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams(photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution canbe determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations.展开更多
Radiation-induced acoustic computed tomography(RACT)is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues.Traditional backprojection(BP)reconstructions carry no...Radiation-induced acoustic computed tomography(RACT)is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues.Traditional backprojection(BP)reconstructions carry noisy and limited-view artifacts.Model-based algorithms have been demonstrated to overcome the drawbacks of BPs.However,model-based algorithms are relatively more complex to develop and computationally demanding.Furthermore,while a plethora of novel algorithms has been developed over the past decade,most of these algorithms are either not accessible,readily available,or hard to implement for researchers who are not well versed in programming.We developed a user-friendly MATLAB-based graphical user interface(GUI;RACT2D)that facilitates back-projection and model-based image reconstructions for twodimensional RACT problems.We included numerical and experimental X-ray-induced acoustic datasets to demonstrate the capabilities of the GUI.The developed algorithms support parallel computing for evaluating reconstructions using the cores of the computer,thus further accelerating the reconstruction speed.We also share the MATLAB-based codes for evaluating RACT reconstructions,which users with MATLAB programming expertise can further modify to suit their needs.The shared GUI and codes can be of interest to researchers across the globe and assist them in e±cient evaluation of improved RACT reconstructions.展开更多
This paper deals with a problem of application generation together with their Graphic User Interface (GUI). Particularly, the source code generator based on dynamic frames was improved for more effective specificati...This paper deals with a problem of application generation together with their Graphic User Interface (GUI). Particularly, the source code generator based on dynamic frames was improved for more effective specification of GUI. It's too demanding for the developers to have specification of the application that contain all physical coordinates and other details of buttons and other GUI elements. The developed solution for this problem is based on post-processing of generated source code using iterators for specifying coordinates and other values of graphic elements. The paper includes two examples of generating web applications and their GUI.展开更多
In this paper, the design of a Graphical User Interface for CAN data frame monitoring is presented. The GUI has been developed in the Qt Creator IDE. A touch screen for visualization and control is used, which in turn...In this paper, the design of a Graphical User Interface for CAN data frame monitoring is presented. The GUI has been developed in the Qt Creator IDE. A touch screen for visualization and control is used, which in turn is controlled by a development board with a SoC Cyclone V, through which a Linux operating system is executed.展开更多
In the last two decades, tangible user interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. TUIs show a potential to enhance the way in which people interact with d...In the last two decades, tangible user interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. TUIs show a potential to enhance the way in which people interact with digital information. First, this paper exam- ines the existing body of work on tangible user interfaces and discusses their application domains, especially information visualiza- tion. Then it provides a definition of intuitive use and reviews formerly separated ideas on physicality. As interaction has an impact on the overall product experience, we also discuss whether intuitive use influences the users' aesthetic judgements of such products.展开更多
This paper aims at the presentation of an interface to simulate cardiovascular respiratory system. The authors are interested in the resolution of optimal control problem related to the performance of a 30 years old w...This paper aims at the presentation of an interface to simulate cardiovascular respiratory system. The authors are interested in the resolution of optimal control problem related to the performance of a 30 years old woman. The results show in the most case the determinant parameters of cardiovascular respiratory system reach the equilibrium value due to its controls that is heart rate and alveolar ventilation.展开更多
A brain-computer interface (BCI) facilitates bypassing the peripheral nervous system and directly communicating with surrounding devices. Navigation technology using BCI has developed-from exploring the prototype para...A brain-computer interface (BCI) facilitates bypassing the peripheral nervous system and directly communicating with surrounding devices. Navigation technology using BCI has developed-from exploring the prototype paradigm in the virtual environment (VE) to accurately completing the locomotion intention of the operator in the form of a powered wheelchair or mobile robot in a real environment. This paper summarizes BCI navigation applications that have been used in both real and VEs in the past 20 years. Horizontal comparisons were conducted between various paradigms applied to BCI and their unique signal-processing methods. Owing to the shift in the control mode from synchronous to asynchronous, the development trend of navigation applications in the VE was also reviewed. The contrast between high level commands and low-level commands is introduced as the main line to review the two major applications of BCI navigation in real environments: mobile robots and unmanned aerial vehicles (UAVs). Finally, applications of BCI navigation to scenarios outside the laboratory;research challenges, including human factors in navigation application interaction design;and the feasibility of hybrid BCI for BCI navigation are discussed in detail.展开更多
Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Severa...Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.展开更多
The user-computer interface for color selection is of great significance for the use of colors in computer graphics, particularly in some fields where the used colors have to be selected carefully. This paper discusse...The user-computer interface for color selection is of great significance for the use of colors in computer graphics, particularly in some fields where the used colors have to be selected carefully. This paper discusses what factors have to be considered to design an effective user interface for color selec- tion. It also presents a method which shows how to represent 3D color spaces according to the psychol- ogy of color perception. Two examples of user interface for color selection are given. One is based on the CLELUV uniform color space, the other is based on RGB-rotated color model.展开更多
移动互联网信息无障碍(mobile Internet information accessibility,MIIA)旨在确保移动应用内容对所有用户(包括视障人士等)都能平等、便捷、无障碍地获取和使用.系统综述移动互联网信息无障碍领域的最新研究进展,重点分析总结移动端GUI...移动互联网信息无障碍(mobile Internet information accessibility,MIIA)旨在确保移动应用内容对所有用户(包括视障人士等)都能平等、便捷、无障碍地获取和使用.系统综述移动互联网信息无障碍领域的最新研究进展,重点分析总结移动端GUI(graphical user interface)语义表征与理解、无障碍检测以及布局修复等方面的研究成果.分析表明,从传统启发式规则方法到深度学习驱动的自动化工具,相关技术逐渐提升了检测的精度和适应性,同时也揭示了在应对复杂动态交互和多样化用户需求方面的挑战,并对未来研究方向进行了展望.移动互联网信息无障碍技术已显著改善了视障用户的数字体验,但仍需不断创新与优化,以实现真正普惠与包容的数字社会.展开更多
移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface,GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技术...移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface,GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技术以提升测试效率并检测潜在缺陷.收集了145篇相关论文,系统地梳理、分析和总结现有工作.提出了“测试生成器-测试环境”研究框架,将该领域的研究按照所属模块进行分类.特别地,依据测试生成器所基于的方法,将现有方法大致分为基于随机、基于启发式搜索、基于模型、基于机器学习和基于测试迁移这5个类别.此外,还从缺陷类别和测试动作等其他分类维度梳理现有方法.收集了该领域中较有影响力的数据集和开源工具.最后,总结当前面临的挑战并展望未来的研究方向.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 60736029 and 30525030UESTC Youth Foundation under Grant No. L08010901JX0772 for support.
文摘In this paper, a new control system based on forearm electromyogram (EMG) is proposed for computer peripheral control and artificial prosthesis control. This control system intends to realize the commands of six pre-defined hand poses: up, down, left, right, yes, and no. In order to research the possibility of using a unified amplifier for both electroencephalogram (EEG) and EMG, the surface forearm EMG data is acquired by a 4-channel EEG measurement system. The Bayesian classifier is used to classify the power spectral density (PSD) of the signal. The experiment result verifies that this control system can supply a high command recognition rate (average 48%) even the EMG data is collected with an EEG system just with single electrode measurement.
基金the National High Technology Research and Development Program (863) of China(No. 2006AA02A137)
文摘In recent years, computer assisted surgery (CAS) systems become more and more common in clinical practices, but few specific design criteria have been proposed for human-computer interface (HCI) in GAS systems. This paper tried to give universal criteria of HCI design for CAS systems through introduction of demonstration application, which is total knee replacement (TKR) with a nonimage-based navigation system. A typical computer assisted process can be divided into four phases: the preoperative planning phase, the intraoperative registration phase, the intraoperative navigation phase and finally the postoperative assessment phase. The interface design for four steps is described respectively in the demonstration application. These criteria this paper summarized can be useful to software developers to achieve reliable and effective interfaces for new CAS systems more easily.
文摘In this review, five graphical user interfaces(GUIs) used in radiation therapy practices and researches are introduced. They are:(1) the treatment time calculator, superficialx-ray treatment time calculator(SUPCALC) used in the superficial X-ray radiation therapy;(2) the monitor unit calculator, electron monitor unit calculator(EMUC) used in the electron radiation therapy;(3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy(SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy;(4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and(5) the monitor unit calculator, photon beam monitor unit calculator(PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams(photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution canbe determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations.
基金supported by the National Institute of Health (R37CA240806)and American Cancer Society (133697-RSG-19-110-01-CCE)support from UCI Chao Family Comprehensive Cancer Center (P30CA062203).
文摘Radiation-induced acoustic computed tomography(RACT)is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues.Traditional backprojection(BP)reconstructions carry noisy and limited-view artifacts.Model-based algorithms have been demonstrated to overcome the drawbacks of BPs.However,model-based algorithms are relatively more complex to develop and computationally demanding.Furthermore,while a plethora of novel algorithms has been developed over the past decade,most of these algorithms are either not accessible,readily available,or hard to implement for researchers who are not well versed in programming.We developed a user-friendly MATLAB-based graphical user interface(GUI;RACT2D)that facilitates back-projection and model-based image reconstructions for twodimensional RACT problems.We included numerical and experimental X-ray-induced acoustic datasets to demonstrate the capabilities of the GUI.The developed algorithms support parallel computing for evaluating reconstructions using the cores of the computer,thus further accelerating the reconstruction speed.We also share the MATLAB-based codes for evaluating RACT reconstructions,which users with MATLAB programming expertise can further modify to suit their needs.The shared GUI and codes can be of interest to researchers across the globe and assist them in e±cient evaluation of improved RACT reconstructions.
文摘This paper deals with a problem of application generation together with their Graphic User Interface (GUI). Particularly, the source code generator based on dynamic frames was improved for more effective specification of GUI. It's too demanding for the developers to have specification of the application that contain all physical coordinates and other details of buttons and other GUI elements. The developed solution for this problem is based on post-processing of generated source code using iterators for specifying coordinates and other values of graphic elements. The paper includes two examples of generating web applications and their GUI.
文摘In this paper, the design of a Graphical User Interface for CAN data frame monitoring is presented. The GUI has been developed in the Qt Creator IDE. A touch screen for visualization and control is used, which in turn is controlled by a development board with a SoC Cyclone V, through which a Linux operating system is executed.
文摘In the last two decades, tangible user interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. TUIs show a potential to enhance the way in which people interact with digital information. First, this paper exam- ines the existing body of work on tangible user interfaces and discusses their application domains, especially information visualiza- tion. Then it provides a definition of intuitive use and reviews formerly separated ideas on physicality. As interaction has an impact on the overall product experience, we also discuss whether intuitive use influences the users' aesthetic judgements of such products.
文摘This paper aims at the presentation of an interface to simulate cardiovascular respiratory system. The authors are interested in the resolution of optimal control problem related to the performance of a 30 years old woman. The results show in the most case the determinant parameters of cardiovascular respiratory system reach the equilibrium value due to its controls that is heart rate and alveolar ventilation.
基金Supported by Key-Area Research and Development Program of Guangdong Province (2019B010149001)the National NaturalScience Foundation of China (61960206007)the 111 Project (B18005)
文摘A brain-computer interface (BCI) facilitates bypassing the peripheral nervous system and directly communicating with surrounding devices. Navigation technology using BCI has developed-from exploring the prototype paradigm in the virtual environment (VE) to accurately completing the locomotion intention of the operator in the form of a powered wheelchair or mobile robot in a real environment. This paper summarizes BCI navigation applications that have been used in both real and VEs in the past 20 years. Horizontal comparisons were conducted between various paradigms applied to BCI and their unique signal-processing methods. Owing to the shift in the control mode from synchronous to asynchronous, the development trend of navigation applications in the VE was also reviewed. The contrast between high level commands and low-level commands is introduced as the main line to review the two major applications of BCI navigation in real environments: mobile robots and unmanned aerial vehicles (UAVs). Finally, applications of BCI navigation to scenarios outside the laboratory;research challenges, including human factors in navigation application interaction design;and the feasibility of hybrid BCI for BCI navigation are discussed in detail.
基金Supported by the‘Automotive Glazing Application in Intelligent Cockpit Human-Machine Interface’project(SKHX2021049)a collaboration between the Saint-Go Bain Research and the Beijing Normal University。
文摘Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.
文摘The user-computer interface for color selection is of great significance for the use of colors in computer graphics, particularly in some fields where the used colors have to be selected carefully. This paper discusses what factors have to be considered to design an effective user interface for color selec- tion. It also presents a method which shows how to represent 3D color spaces according to the psychol- ogy of color perception. Two examples of user interface for color selection are given. One is based on the CLELUV uniform color space, the other is based on RGB-rotated color model.
文摘移动互联网信息无障碍(mobile Internet information accessibility,MIIA)旨在确保移动应用内容对所有用户(包括视障人士等)都能平等、便捷、无障碍地获取和使用.系统综述移动互联网信息无障碍领域的最新研究进展,重点分析总结移动端GUI(graphical user interface)语义表征与理解、无障碍检测以及布局修复等方面的研究成果.分析表明,从传统启发式规则方法到深度学习驱动的自动化工具,相关技术逐渐提升了检测的精度和适应性,同时也揭示了在应对复杂动态交互和多样化用户需求方面的挑战,并对未来研究方向进行了展望.移动互联网信息无障碍技术已显著改善了视障用户的数字体验,但仍需不断创新与优化,以实现真正普惠与包容的数字社会.
文摘移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface,GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技术以提升测试效率并检测潜在缺陷.收集了145篇相关论文,系统地梳理、分析和总结现有工作.提出了“测试生成器-测试环境”研究框架,将该领域的研究按照所属模块进行分类.特别地,依据测试生成器所基于的方法,将现有方法大致分为基于随机、基于启发式搜索、基于模型、基于机器学习和基于测试迁移这5个类别.此外,还从缺陷类别和测试动作等其他分类维度梳理现有方法.收集了该领域中较有影响力的数据集和开源工具.最后,总结当前面临的挑战并展望未来的研究方向.