期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Yang-Mills bar connection and holomorphic structure
1
作者 Teng Huang 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第8期2-5,1,I0002,共6页
In this note,we study the Yang-Mills bar connection,i.e.,the curvature of obeys,δ_(A)^(*)F_(A)^(0.2)on a principal G-bundle P over a compact complex manifold.According to the Koszul-Malgrange criterion,any holomorphi... In this note,we study the Yang-Mills bar connection,i.e.,the curvature of obeys,δ_(A)^(*)F_(A)^(0.2)on a principal G-bundle P over a compact complex manifold.According to the Koszul-Malgrange criterion,any holomorphic structure on can be seen as a solution to this equation.Suppose that G=SU(2)or SO(3)and X is a complex surface with H_(1)(X,Z_(2))=0.We then prove that the-part curvature of an irreducible Yang-Mills bar connection vanishes,i.e.,(P,δ_(A))is holomorphic. 展开更多
关键词 Yang-Mills bar connection holomorphic structure Kähler surface
在线阅读 下载PDF
A Note on Curvature Estimate of the Hermitian–Yang–Mills Flow Dedicated to celebrate the Sixtieth anniversary of USTC 被引量:3
2
作者 Jiayu Li Chuanjing Zhang Xi Zhang 《Communications in Mathematics and Statistics》 SCIE 2018年第3期319-358,共40页
In this paper,we study the curvature estimate of the Hermitian–Yang–Mills flow on holomorphic vector bundles.In one simple case,we show that the curvature of the evolved Hermitian metric is uniformly bounded away fr... In this paper,we study the curvature estimate of the Hermitian–Yang–Mills flow on holomorphic vector bundles.In one simple case,we show that the curvature of the evolved Hermitian metric is uniformly bounded away from the analytic subvariety determined by the Harder–Narasimhan–Seshadri filtration of the holomorphic vector bundle. 展开更多
关键词 holomorphic structure Harder-Narasimhan-Seshadri filtration Hermitian-Yang-Mills flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部