With technological advancements,high-speed rail has emerged as a prevalent mode of transportation.During travel,passengers exhibit a growing demand for streaming media services.However,the high-speed mobile networks e...With technological advancements,high-speed rail has emerged as a prevalent mode of transportation.During travel,passengers exhibit a growing demand for streaming media services.However,the high-speed mobile networks environment poses challenges,including frequent base station handoffs,which significantly degrade wireless network transmission performance.Improving transmission efficiency in high-speed mobile networks and optimizing spatiotemporal wireless resource allocation to enhance passengers’media experiences are key research priorities.To address these issues,we propose an Adaptive Cross-Layer Optimization Transmission Method with Environment Awareness(ACOTM-EA)tailored for high-speed rail streaming media.Within this framework,we develop a channel quality prediction model utilizing Kalman filtering and an algorithm to identify packet loss causes.Additionally,we introduce a proactive base station handoffstrategy to minimize handoffrelated disruptions and optimize resource distribution across adjacent base stations.Moreover,this study presents a wireless resource allocation approach based on an enhanced genetic algorithm,coupled with an adaptive bitrate selection mechanism,to maximize passenger Quality of Experience(QoE).To evaluate the proposed method,we designed a simulation experiment and compared ACOTM-EA with established algorithms.Results indicate that ACOTM-EA improves throughput by 11%and enhances passengers’media experience by 5%.展开更多
The integration of high-speed railway communication systems with 5G technology is widely recognized as a significant development.Due to the considerable mobility of trains and the complex nature of the environment,the...The integration of high-speed railway communication systems with 5G technology is widely recognized as a significant development.Due to the considerable mobility of trains and the complex nature of the environment,the wireless channel exhibits non-stationary characteristics and fast time-varying characteristics,which presents significant hurdles in terms of channel estimation.In addition,the use of massive MIMO technology in the context of 5G networks also leads to an increase in the complexity of estimation.To address the aforementioned issues,this paper presents a novel approach for channel estimation in high mobility scenarios using a reconstruction and recovery network.In this method,the time-frequency response of the channel is considered as a two-dimensional image.The Fast Super-Resolution Convolution Neural Network(FSRCNN)is used to first reconstruct channel images.Next,the Denoising Convolution Neural Network(DnCNN)is applied to reduce the channel noise and improve the accuracy of channel estimation.Simulation results show that the accuracy of the channel estimation model surpasses that of the standard channel estimation method,while also exhibiting reduced algorithmic complexity.展开更多
The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children a...The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes.展开更多
Software-defined satellite networks(SDSNs)play an essential role in future networks.Due to the diverse service scenarios,SDSN faces the demand of packet processing for heterogeneous protocols.Existing packet switching...Software-defined satellite networks(SDSNs)play an essential role in future networks.Due to the diverse service scenarios,SDSN faces the demand of packet processing for heterogeneous protocols.Existing packet switching typically works on one single protocol.For protocol-heterogeneous users,existing packet switch architectures have to construct multiple protocol-specific switching instances,resulting in severe resource waste.In this article,we propose the heterogeneous protocol-independent packet switch architecture(HISA).HISA employs a fast parsing structure to achieve efficient heterogeneous packet parsing and a novel match-action pipeline to achieve shared packet processing among heterogeneous users.HISA can also support the online configuration of switching behaviors.Use cases illustrate the effectiveness of applying HISA in SDSN.Numerical results show that compared to existing packet switching,HISA can significantly improve the resource utilization of SDSN.展开更多
Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operati...Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operation of high-speed trains.However,given the complex and variable real-world operational conditions of high-speed railways,there is no real-time and robust pantograph fault-detection method capable of handling large volumes of surveillance video.Hence,it is of paramount importance to maintain real-time monitoring and analysis of pantographs.Our study presents a real-time intelligent detection technology for identifying faults in high-speed railway pantographs,utilizing a fusion of self-attention and convolution features.We delved into lightweight multi-scale feature-extraction and fault-detection models based on deep learning to detect pantograph anomalies.Compared with traditional methods,this approach achieves high recall and accuracy in pantograph recognition,accurately pinpointing issues like discharge sparks,pantograph horns,and carbon pantograph-slide malfunctions.After experimentation and validation with actual surveillance videos of electric multiple-unit train,our algorithmic model demonstrates real-time,high-accuracy performance even under complex operational conditions.展开更多
The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The...The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The results indicated that grains coarsening and M2C carbides decomposing appeared in the steel at 1150℃for 5 min,and the network carbides were broken and deformed radially after the hot deformation.A constitutive equation was determined based on the corrected flow stress-strain curves considering the effects of friction and temperature,and a constitutive model with strain-compensated was established.The dynamic recrystallization(DRX)characteristic values were calculated based on the Cingara-McQueen model,and the grain distribution under different conditions was observed and analyzed.Significantly,the action mechanisms of carbides on the DRX were illuminated.It was found from a functional relation between average grain size and Z parameter that grain size increased with increasing temperature and decreasing strain rate.Optimal parameters for the hot deformation were determined as 980-1005℃~0.01-0.015 s^(−1)and 1095-1110℃~0.01-0.037 s^(−1)at the strain ranging from 0.05 to 0.8.Increasing the strain rate appropriately during deformation process was suggested to obtain fine and uniformly distributed carbides.Besides,an industrial grade forging deformation had also verified practicability of the above parameters.展开更多
Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in ...Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in feature distributions across domains,resulting in suboptimal performance and robustness.Therefore,this paper proposes a fault diagnosis neural network for hard sample mining and domain adaptive(SmdaNet).First,the method uses deep belief networks(DBN)to build a diagnostic model.Hard samples are mined based on the loss values,dividing the data set into hard and easy samples.Second,elastic weight consolidation(EWC)is used to train the model on hard samples,effectively preventing information forgetting.Finally,the feature space domain adaptation is introduced to optimize the feature space by minimizing the Kullback–Leibler divergence of the feature distributions.Experimental results show that the proposed SmdaNet method outperforms existing approaches in terms of classification accuracy,robustness and interpretability on the penicillin simulation and Tennessee Eastman process datasets.展开更多
In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision ...In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.展开更多
Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert p...Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert performance.This survey reviews the principal model families as convolutional,recurrent,generative,reinforcement,autoencoder,and transfer-learning approaches as emphasising how their architectural choices map to tasks such as segmentation,classification,reconstruction,and anomaly detection.A dedicated treatment of multimodal fusion networks shows how imaging features can be integrated with genomic profiles and clinical records to yield more robust,context-aware predictions.To support clinical adoption,we outline post-hoc explainability techniques(Grad-CAM,SHAP,LIME)and describe emerging intrinsically interpretable designs that expose decision logic to end users.Regulatory guidance from the U.S.FDA,the European Medicines Agency,and the EU AI Act is summarised,linking transparency and lifecycle-monitoring requirements to concrete development practices.Remaining challenges as data imbalance,computational cost,privacy constraints,and cross-domain generalization are discussed alongside promising solutions such as federated learning,uncertainty quantification,and lightweight 3-D architectures.The article therefore offers researchers,clinicians,and policymakers a concise,practice-oriented roadmap for deploying trustworthy deep-learning systems in healthcare.展开更多
Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of h...Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.展开更多
Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and proces...Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.展开更多
In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent ...In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.展开更多
Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was esta...Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations.展开更多
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b...Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers.展开更多
Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely...Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.展开更多
Traffic is an indispensable prerequisite for a tourism system. The "four vertical and four horizontal" HSR network represents an important milestone of the "traffic revolution" in China. It will affect the spatial...Traffic is an indispensable prerequisite for a tourism system. The "four vertical and four horizontal" HSR network represents an important milestone of the "traffic revolution" in China. It will affect the spatial pattern of tourism accessibility in Chinese cities, thus substan- tially increasing their power to attract tourists and their radiation force. This paper examines the evolution and spatial characteristics of the power to attract tourism of cities linked by China's HSR network by measuring the influence of accessibility of 338 HSR-linked cities using GIS analysis. The results show the following. (1) The accessibility of Chinese cities is optimized by the HSR network, whose spatial pattern of accessibility exhibits an obvious traf- fic direction and causes a high-speed rail-corridor effect. (2) The spatial pattern of tourism field strength in Chinese cities exhibits the dual characteristics of multi-center annular diver- gence and dendritic diffusion. Dendritic diffusion is particularly more obvious along the HSR line. The change rate of urban tourism field strength forms a high-value corridor along the HSR line and exhibits a spatial pattern of decreasing area from the center to the outer limit along the HSR line. (3) The influence of the higher and highest tourism field strength areas along the HSR line is most significant, and the number of cities that distribute into these two types of tourism field strengths significantly increases: their area expands by more than 100% HSR enhances the tourism field strength value of regional central cities, and the radiation range of tourism attraction extends along the HSR line.展开更多
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o...A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications.展开更多
In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on or...In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on orthogonal experimental design.The experimental data of residual stress and microhardness were measured in the same depth.The residual stress and microhardness laws were investigated and analyzed.Artificial neural network(ANN)with four layers(4-N-(N-1)-2)was applied to predict the residual stress and microhardness of FGH95 subjected to multiple overlap LSP.The experimental data were divided as training-testing sets in pairs.Laser energy,overlap rate,shocked times and depth were set as inputs,while residual stress and microhardness were set as outputs.The prediction performances with different network configuration of developed ANN models were compared and analyzed.The developed ANN model with network configuration of 4-7-6-2 showed the best predict performance.The predicted values showed a good agreement with the experimental values.In addition,the correlation coefficients among all the parameters and the effect of LSP parameters on materials response were studied.It can be concluded that ANN is a useful method to predict residual stress and microhardness of material subjected to LSP when with limited experimental data.展开更多
High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in...High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in detail the relationship between the bearing temperature and influencing factors.In this study,a dynamics model of the axle box bearing of high-speed trains is established.The model can obtain the contact force between the rollers and raceway and its change law when the bearing contains outer-ring,inner-ring,and rolling-element faults.Based on the model,a thermal network method is introduced to study the temperature field distribution of the axle box bearings of high-speed trains.In this model,the heat generation,conduction,and dispersion of the isothermal nodes can be solved.The results show that the temperature of the contact point between the outer-ring raceway and rolling-elements is the highest.The relationships between the node temperature and the speed,fault type,and fault size are analyzed,finding that the higher the speed,the higher the node temperature.Under different fault types,the node temperature first increases and then decreases as the fault size increases.The effectiveness of the model is demonstrated using the actual temperature data of a high-speed train.This study proposes a thermal network model that can predict the temperature of each component of the bearings on a high-speed train under various speed and fault conditions.展开更多
Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic i...Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic in the field of underwater acoustic signals.In this paper,the deep learning model is applied to underwater target recognition.Improved anti-noise Power-Normalized Cepstral Coefficients(ia-PNCC)is proposed,based on PNCC applied to underwater noises.Multitaper and normalized Gammatone filter banks are applied to improve the anti-noise capacity.The method is combined with a convolutional neural network in order to recognize the underwater target.Experiment results show that the acoustic feature presented by ia-PNCC has lower noise and are wellsuited to underwater target recognition using a convolutional neural network.Compared with the combination of convolutional neural network with single acoustic feature,such as MFCC(Mel-scale Frequency Cepstral Coefficients)or LPCC(Linear Prediction Cepstral Coefficients),the combination of the ia-PNCC with a convolutional neural network offers better accuracy for underwater target recognition.展开更多
基金substantially supported by the National Natural Science Foundation of China under Grant No.62002263in part by Tianjin Municipal Education Commission Research Program Project under 2022KJ012Tianjin Science and Technology Program Projects:24YDTPJC00630.
文摘With technological advancements,high-speed rail has emerged as a prevalent mode of transportation.During travel,passengers exhibit a growing demand for streaming media services.However,the high-speed mobile networks environment poses challenges,including frequent base station handoffs,which significantly degrade wireless network transmission performance.Improving transmission efficiency in high-speed mobile networks and optimizing spatiotemporal wireless resource allocation to enhance passengers’media experiences are key research priorities.To address these issues,we propose an Adaptive Cross-Layer Optimization Transmission Method with Environment Awareness(ACOTM-EA)tailored for high-speed rail streaming media.Within this framework,we develop a channel quality prediction model utilizing Kalman filtering and an algorithm to identify packet loss causes.Additionally,we introduce a proactive base station handoffstrategy to minimize handoffrelated disruptions and optimize resource distribution across adjacent base stations.Moreover,this study presents a wireless resource allocation approach based on an enhanced genetic algorithm,coupled with an adaptive bitrate selection mechanism,to maximize passenger Quality of Experience(QoE).To evaluate the proposed method,we designed a simulation experiment and compared ACOTM-EA with established algorithms.Results indicate that ACOTM-EA improves throughput by 11%and enhances passengers’media experience by 5%.
基金funded in part by the National Natural Science Foundation of China(62261024 and U2001213)in part by National Key Research and Development Project(2020YFB1807204)+2 种基金in part by Science and Technology Project of Education Department of Jiangxi Province(GJJ214606 and GJJ2205201)in part by Key Laboratory of Universal Wireless Communications(BUPT),Ministry of Education,P.R.China(KFKT-2022101)in part by the Jiangxi Provincial Natural Science Foundation(20212BAB212001)。
文摘The integration of high-speed railway communication systems with 5G technology is widely recognized as a significant development.Due to the considerable mobility of trains and the complex nature of the environment,the wireless channel exhibits non-stationary characteristics and fast time-varying characteristics,which presents significant hurdles in terms of channel estimation.In addition,the use of massive MIMO technology in the context of 5G networks also leads to an increase in the complexity of estimation.To address the aforementioned issues,this paper presents a novel approach for channel estimation in high mobility scenarios using a reconstruction and recovery network.In this method,the time-frequency response of the channel is considered as a two-dimensional image.The Fast Super-Resolution Convolution Neural Network(FSRCNN)is used to first reconstruct channel images.Next,the Denoising Convolution Neural Network(DnCNN)is applied to reduce the channel noise and improve the accuracy of channel estimation.Simulation results show that the accuracy of the channel estimation model surpasses that of the standard channel estimation method,while also exhibiting reduced algorithmic complexity.
基金supported by the IITP(Institute of Information&Communications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korean government(Ministry of Science and ICT)(IITP-2025-RS-2024-00438056).
文摘The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes.
基金supported by the National Natural Science Foundation of China(62101300,62341130)the Youth Fund Program of the Beijing National Research Center for Information Science and Technology under Grant BNR2021RC01012the Open Research Fund Program of the Beijing National Research Center for Information Science and Technology under Grant BNR2021KF02001.
文摘Software-defined satellite networks(SDSNs)play an essential role in future networks.Due to the diverse service scenarios,SDSN faces the demand of packet processing for heterogeneous protocols.Existing packet switching typically works on one single protocol.For protocol-heterogeneous users,existing packet switch architectures have to construct multiple protocol-specific switching instances,resulting in severe resource waste.In this article,we propose the heterogeneous protocol-independent packet switch architecture(HISA).HISA employs a fast parsing structure to achieve efficient heterogeneous packet parsing and a novel match-action pipeline to achieve shared packet processing among heterogeneous users.HISA can also support the online configuration of switching behaviors.Use cases illustrate the effectiveness of applying HISA in SDSN.Numerical results show that compared to existing packet switching,HISA can significantly improve the resource utilization of SDSN.
基金supported by the National Key R&D Program of China(No.2022YFB4301102).
文摘Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operation of high-speed trains.However,given the complex and variable real-world operational conditions of high-speed railways,there is no real-time and robust pantograph fault-detection method capable of handling large volumes of surveillance video.Hence,it is of paramount importance to maintain real-time monitoring and analysis of pantographs.Our study presents a real-time intelligent detection technology for identifying faults in high-speed railway pantographs,utilizing a fusion of self-attention and convolution features.We delved into lightweight multi-scale feature-extraction and fault-detection models based on deep learning to detect pantograph anomalies.Compared with traditional methods,this approach achieves high recall and accuracy in pantograph recognition,accurately pinpointing issues like discharge sparks,pantograph horns,and carbon pantograph-slide malfunctions.After experimentation and validation with actual surveillance videos of electric multiple-unit train,our algorithmic model demonstrates real-time,high-accuracy performance even under complex operational conditions.
基金support from Open Project of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(No.41622030)Danyang Coinch New Material Technology Co.,Ltd.
文摘The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The results indicated that grains coarsening and M2C carbides decomposing appeared in the steel at 1150℃for 5 min,and the network carbides were broken and deformed radially after the hot deformation.A constitutive equation was determined based on the corrected flow stress-strain curves considering the effects of friction and temperature,and a constitutive model with strain-compensated was established.The dynamic recrystallization(DRX)characteristic values were calculated based on the Cingara-McQueen model,and the grain distribution under different conditions was observed and analyzed.Significantly,the action mechanisms of carbides on the DRX were illuminated.It was found from a functional relation between average grain size and Z parameter that grain size increased with increasing temperature and decreasing strain rate.Optimal parameters for the hot deformation were determined as 980-1005℃~0.01-0.015 s^(−1)and 1095-1110℃~0.01-0.037 s^(−1)at the strain ranging from 0.05 to 0.8.Increasing the strain rate appropriately during deformation process was suggested to obtain fine and uniformly distributed carbides.Besides,an industrial grade forging deformation had also verified practicability of the above parameters.
基金support from the following foundations:the National Natural Science Foundation of China(62322309,62433004)Shanghai Science and Technology Innovation Action Plan(23S41900500)Shanghai Pilot Program for Basic Research(22TQ1400100-16).
文摘Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in feature distributions across domains,resulting in suboptimal performance and robustness.Therefore,this paper proposes a fault diagnosis neural network for hard sample mining and domain adaptive(SmdaNet).First,the method uses deep belief networks(DBN)to build a diagnostic model.Hard samples are mined based on the loss values,dividing the data set into hard and easy samples.Second,elastic weight consolidation(EWC)is used to train the model on hard samples,effectively preventing information forgetting.Finally,the feature space domain adaptation is introduced to optimize the feature space by minimizing the Kullback–Leibler divergence of the feature distributions.Experimental results show that the proposed SmdaNet method outperforms existing approaches in terms of classification accuracy,robustness and interpretability on the penicillin simulation and Tennessee Eastman process datasets.
基金supported by National Natural Science Foundation of China(Nos.62161016,61661025)Gansu Provincial Science and Technology Plan(No.20JR10RA273)。
文摘In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.
基金supported by the Science Committee of the Ministry of Higher Education and Science of the Republic of Kazakhstan within the framework of grant AP23489899“Applying Deep Learning and Neuroimaging Methods for Brain Stroke Diagnosis”.
文摘Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert performance.This survey reviews the principal model families as convolutional,recurrent,generative,reinforcement,autoencoder,and transfer-learning approaches as emphasising how their architectural choices map to tasks such as segmentation,classification,reconstruction,and anomaly detection.A dedicated treatment of multimodal fusion networks shows how imaging features can be integrated with genomic profiles and clinical records to yield more robust,context-aware predictions.To support clinical adoption,we outline post-hoc explainability techniques(Grad-CAM,SHAP,LIME)and describe emerging intrinsically interpretable designs that expose decision logic to end users.Regulatory guidance from the U.S.FDA,the European Medicines Agency,and the EU AI Act is summarised,linking transparency and lifecycle-monitoring requirements to concrete development practices.Remaining challenges as data imbalance,computational cost,privacy constraints,and cross-domain generalization are discussed alongside promising solutions such as federated learning,uncertainty quantification,and lightweight 3-D architectures.The article therefore offers researchers,clinicians,and policymakers a concise,practice-oriented roadmap for deploying trustworthy deep-learning systems in healthcare.
文摘Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.
文摘Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.
基金supported by International Science and Technology Cooperation project (Grant No. 2008DFA71750)
文摘In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.
基金Project(2007CB613807)supported by the National Basic Research Program of ChinaProject(NCET-07-0696)supported by the New Century Excellent Talents in University,ChinaProject(35-TP-2009)supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations.
基金the National Natural Science Foundation of China(62003298,62163036)the Major Project of Science and Technology of Yunnan Province(202202AD080005,202202AH080009)the Yunnan University Professional Degree Graduate Practice Innovation Fund Project(ZC-22222770)。
文摘Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers.
基金gratefully acknowledge the financial support from the Scientific and Technological Innovation 2030-“New Generation Artificial Intelligence”Major Project(2021ZD0112301)National Natural Science Foundation of China(62273011,62076013,62303027).
文摘Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.
基金Foundation: National Natural Science Foundation of China, No. 41271134
文摘Traffic is an indispensable prerequisite for a tourism system. The "four vertical and four horizontal" HSR network represents an important milestone of the "traffic revolution" in China. It will affect the spatial pattern of tourism accessibility in Chinese cities, thus substan- tially increasing their power to attract tourists and their radiation force. This paper examines the evolution and spatial characteristics of the power to attract tourism of cities linked by China's HSR network by measuring the influence of accessibility of 338 HSR-linked cities using GIS analysis. The results show the following. (1) The accessibility of Chinese cities is optimized by the HSR network, whose spatial pattern of accessibility exhibits an obvious traf- fic direction and causes a high-speed rail-corridor effect. (2) The spatial pattern of tourism field strength in Chinese cities exhibits the dual characteristics of multi-center annular diver- gence and dendritic diffusion. Dendritic diffusion is particularly more obvious along the HSR line. The change rate of urban tourism field strength forms a high-value corridor along the HSR line and exhibits a spatial pattern of decreasing area from the center to the outer limit along the HSR line. (3) The influence of the higher and highest tourism field strength areas along the HSR line is most significant, and the number of cities that distribute into these two types of tourism field strengths significantly increases: their area expands by more than 100% HSR enhances the tourism field strength value of regional central cities, and the radiation range of tourism attraction extends along the HSR line.
基金Supported by the Natural Science Foundation of Shanxi Province Project(2012011023-2)
文摘A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications.
基金Projects(51875558,51471176)supported by the National Natural Science Foundation of ChinaProject(2017YFB1302802)supported by the National Key R&D Program of China。
文摘In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on orthogonal experimental design.The experimental data of residual stress and microhardness were measured in the same depth.The residual stress and microhardness laws were investigated and analyzed.Artificial neural network(ANN)with four layers(4-N-(N-1)-2)was applied to predict the residual stress and microhardness of FGH95 subjected to multiple overlap LSP.The experimental data were divided as training-testing sets in pairs.Laser energy,overlap rate,shocked times and depth were set as inputs,while residual stress and microhardness were set as outputs.The prediction performances with different network configuration of developed ANN models were compared and analyzed.The developed ANN model with network configuration of 4-7-6-2 showed the best predict performance.The predicted values showed a good agreement with the experimental values.In addition,the correlation coefficients among all the parameters and the effect of LSP parameters on materials response were studied.It can be concluded that ANN is a useful method to predict residual stress and microhardness of material subjected to LSP when with limited experimental data.
基金National Key R&D Program(Grant No.2020YFB2007700),National Natural Science Foundation of China(Grant Nos.11790282,12032017,12002221 and 11872256)S&T Program of Hebei(Grant No.20310803D)+1 种基金Natural Science Foundation of Hebei Province(Grant No.A2020210028)State Foundation for Studying Abroad.
文摘High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in detail the relationship between the bearing temperature and influencing factors.In this study,a dynamics model of the axle box bearing of high-speed trains is established.The model can obtain the contact force between the rollers and raceway and its change law when the bearing contains outer-ring,inner-ring,and rolling-element faults.Based on the model,a thermal network method is introduced to study the temperature field distribution of the axle box bearings of high-speed trains.In this model,the heat generation,conduction,and dispersion of the isothermal nodes can be solved.The results show that the temperature of the contact point between the outer-ring raceway and rolling-elements is the highest.The relationships between the node temperature and the speed,fault type,and fault size are analyzed,finding that the higher the speed,the higher the node temperature.Under different fault types,the node temperature first increases and then decreases as the fault size increases.The effectiveness of the model is demonstrated using the actual temperature data of a high-speed train.This study proposes a thermal network model that can predict the temperature of each component of the bearings on a high-speed train under various speed and fault conditions.
基金This work was funded by the National Natural Science Foundation of China under Grant(Nos.61772152,61502037)the Basic Research Project(Nos.JCKY2016206B001,JCKY2014206C002,JCKY2017604C010)and the Technical Foundation Project(No.JSQB2017206C002).
文摘Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic in the field of underwater acoustic signals.In this paper,the deep learning model is applied to underwater target recognition.Improved anti-noise Power-Normalized Cepstral Coefficients(ia-PNCC)is proposed,based on PNCC applied to underwater noises.Multitaper and normalized Gammatone filter banks are applied to improve the anti-noise capacity.The method is combined with a convolutional neural network in order to recognize the underwater target.Experiment results show that the acoustic feature presented by ia-PNCC has lower noise and are wellsuited to underwater target recognition using a convolutional neural network.Compared with the combination of convolutional neural network with single acoustic feature,such as MFCC(Mel-scale Frequency Cepstral Coefficients)or LPCC(Linear Prediction Cepstral Coefficients),the combination of the ia-PNCC with a convolutional neural network offers better accuracy for underwater target recognition.