In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models incr...In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models increase significantly with the resolution.Artificial intelligence methods have attracted increasing attention because of their high precision and fast computing speeds compared with traditional numerical model methods.The resolution-independent Fourier neural operator(FNO)presents a promising solution to the still challenging problem of high-resolution fluid flow simulations based on low-resolution data.Accordingly,we assess the potential of FNO for high-resolution fluid flow simulations using the vorticity equation as an example.We assess and compare the performance of FNO in multiple high-resolution tests varying the amounts of data and the evolution durations.When assessed with finer resolution data(even up to number of grid points with 1280×1280),the FNO model,trained at low resolution(number of grid points with 64×64)and with limited data,exhibits a stable overall error and good accuracy.Additionally,our work demonstrates that the FNO model takes less time than the traditional numerical method for high-resolution simulations.This suggests that FNO has the prospect of becoming a cost-effective and highly precise model for high-resolution simulations in the future.Moreover,FNO can make longer high-resolution predictions while training with less data by superimposing vorticity fields from previous time steps as input.A suitable initial learning rate can be set according to the frequency principle,and the time intervals of the dataset need to be adjusted according to the spatial resolution of the input when training the FNO model.Our findings can help optimize FNO for future fluid flow simulations.展开更多
A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensifica...A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensification (RI) period in the northern South China Sea, and the 18-h period of weakening after landfall. The results show that the model reproduces the track, intensity, structure of the storm, and environmental circulations reasonably well. Analysis of the surface energetics under the storm indicates that the storm's intensification is closely related to the net energy gain rate (eg), defined as the difference between the energy production (PD) due to surface entropy flux and the energy dissipation (Ds) due to surface friction near the radius of maximum wind (RMW). Before and during the RI stage, the ~:g is high, indicating sufficient energy supply for the storm to intensify. However, the Sg decreases rapidly as the storm quickly intensifies, because the Ds increases more rapidly than the PD near the RMW. By the time the storm reaches its peak intensity, the Ds is about 20% larger than the PD near the RMW, leading to a local energetics deficit under the eyewall. During the mature stage, the PD and Ds can reach a balance within a radius of 86 km from the storm center (about 2.3 times the RMW). This implies that the local PD under the eyewall is not large enough to balance the Ds, and the radially inward energy transport from outside the eyewall must play an important role in maintaining the storm's intensity, as well as its intensification.展开更多
This paper presents a high-resolution simulation of a remarkable polar low observed over the Sea of Japan on 21 January 1997 by using a 5-km mesh non-hydrostatic model MRI-NHM (Meteorological Research Institute Non-Hy...This paper presents a high-resolution simulation of a remarkable polar low observed over the Sea of Japan on 21 January 1997 by using a 5-km mesh non-hydrostatic model MRI-NHM (Meteorological Research Institute Non-Hydrostatic Model). A 24-hour simulation starting from 0000 UTC 21 January 1997 successfully reproduced the observed features of the polar low such as the wrapping of western part of an initial E-W orientation vortex, the spiral-shaped bands, the cloud-free 'eye', and the warm core structure at its mature stage. The 'eye' of the simulated polar low was relatively dry, and was associated with a strong downdraft. A thermodynamic budget analysis indicates that the 'warm core' in the 'eye' region was mainly caused by the adiabatic warming associated with the downdraft. The relationship among the condensational diabatic heating, the vertical velocity, the convergence of the moisture flux, and the circulation averaged within a 50 km×50 km square area around the polar low center shows that they form a positive feedback loop, and this loop is not inconsistent with the CISK (Conditional Instability of the Second Kind) mechanism during the developing stage of the polar low.展开更多
There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoi...There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoirs and thin interbeds.This study proposes a novel method to constrain improving seismic resolution in the time and frequency domain.The expected wavelet spectrum is used in the frequency domain to broaden the seismic spectrum range and increase the octave.In the time domain,the Frobenius vector regularization of the Hessian matrix is used to constrain the horizontal continuity of the seismic data.It eff ectively protects the signal-to-noise ratio of seismic data while the longitudinal seismic resolution is improved.This method is applied to actual post-stack seismic data and pre-stack gathers dividedly.Without abolishing the phase characteristics of the original seismic data,the time resolution is signifi cantly improved,and the structural features are clearer.Compared with the traditional spectral simulation and deconvolution methods,the frequency distribution is more reasonable,and seismic data has higher resolution.展开更多
Submesoscale processes in marginal seas usually have complex generating mechanisms,highly dependent on the local background flow and forcing.This numerical study investigates the spatial and seasonal differences of su...Submesoscale processes in marginal seas usually have complex generating mechanisms,highly dependent on the local background flow and forcing.This numerical study investigates the spatial and seasonal differences of submesoscale activities in the upper ocean of the South China Sea(SCS)and the different dynamical regimes for sub-regions.The spatial and seasonal variations of vertical vorticity,horizontal convergence,lateral buoyancy gradient,and strain rate are analyzed to compare the submesoscale phenomenon within four sub-regions,the northern region near the Luzon Strait(R1),the middle ocean basin(R2),the western SCS(R3),and the southern SCS(R4).The results suggest that the SCS submesoscale processes are highly heterogeneous in space,with different seasonalities in each sub-region.The submesoscale activities in the northern sub-regions(R1,R2)are active in winter but weak in summer,while there appears an almost seasonal anti-phase in the western region(R3)compared to R1 and R2.Interestingly,no clear seasonality of submesoscale features is shown in the southern region(R4).Further analysis of Ertel potential vorticity reveals different generating mechanisms of submesoscale processes in different sub-regions.Correlation analyses also show the vertical extent of vertical velocity and the role of monsoon in generating submesoscale activities in the upper ocean of sub-regions.All these results suggest that the sub-regions have different regimes for submesoscale processes,e.g.,Kuroshio intrusion(R1),monsoon modulation(R2),frontal effects(R3),topography wakes(R4).展开更多
Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al...Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al., 2006; Ashley and Black, 2008; Cao, 2008; Cao and Ma, 2009; Zhang et al., 2014). Due to its localized and transient nature, the initiation of convection or convective initiation remains one of the least understood aspects of convection in the scientific communi- ties, and it is a significant challenge to accurately predict the exact timing and location of convective initiation (e.g., Cai et al., 2006; Wilson and Roberts, 2006; Xue and Martin, 2006; Cao and Zhang, 2016).展开更多
The IAP 2-L AGCM is modified by introducing a set of climatological surface albedo data into the model for substituting the model′s original surface albedo parameterization. The comparison between the observations an...The IAP 2-L AGCM is modified by introducing a set of climatological surface albedo data into the model for substituting the model′s original surface albedo parameterization. The comparison between the observations and the simulation results by the modified model shows that the general features of the East Asian summer monsoon can be well reproduced by the modified IAP 2-L AGCM. Especially for the simulation of monsoon precipitation, the modified model can well reproduce not only the monthly mean features of the summer monsoon rainfall over East Asia, but also the stepwise advance and retreat of the East Asian summer monsoon rainbelt. Analysis results demonstrate that the good simulation of the monsoon rainfall is closely related to the reasonable simulation of the large scale general circulation over East Asian region, such as the western Pacific subtropical high, Asian monsoon low and the low level flows. The good performance of the modified model in the rainfall simulation shows its great potential to serve as a useful tool for the prediction of summer drought/flood events over East Asia.展开更多
The IAP AGCM was used to simulate the climate of 125kyr and 115kyr before present. We analysed the results and then studied the sensitivity of the model to the changes of radiation distribution induced by orbital para...The IAP AGCM was used to simulate the climate of 125kyr and 115kyr before present. We analysed the results and then studied the sensitivity of the model to the changes of radiation distribution induced by orbital parameter changes. The reasonability of the results was also discussed.展开更多
Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulat...Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulating present-day precipitation shows encouraging results. The spatial distributions of both mean and extreme precipitation, especially the locations of main precipitation centers, are reproduced reasonably. The simulated annual cycle of precipitation is close to the observed. The performance of the model over eastern China is generally better than that over western China. A weakness of the model is the overestimation of precipitation over northern and western China. Analyses on the potential change in precipitation projected under the A1B scenario show that both annual mean precipitation intensity and extreme precipitation would increase significantly over southeastern China. The percentage increase in extreme precipitation is larger than that of mean precipitation. Meanwhile, decreases in mean and extreme precipitation are evident over the southern Tibetan Plateau. For precipitation days, extreme precipitation days are projected to increase over all of China. Both consecutive dry days over northern China and consecutive wet days over southern China would decrease.展开更多
The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors ...The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO's eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models' biases in the BSISO simulation.展开更多
Using the Community Earth System Model framework, the authors build a very-high-resolution quasi-global coupled model by coupling an eddy-resolving quasi-global ocean model with a high-resolution atmospheric model. Th...Using the Community Earth System Model framework, the authors build a very-high-resolution quasi-global coupled model by coupling an eddy-resolving quasi-global ocean model with a high-resolution atmospheric model. The model is successfully run for six years under present climate conditions, and the simulations are evaluated against observational and reanalysis data.The model is capable of simulating large-scale oceanic and atmospheric circulation patterns, sea surface temperature(SST) fronts, oceanic eddy kinetic energy, and fine-scale structures of surface winds. The ocean mesoscale structure–induced air–sea interaction characteristics are explored in detail. The model can effectively reproduce positive correlations between SST and surface wind stress induced by mesoscale structures through comparison with observations. The positive correlation is particularly significant over regions with strong oceanic fronts and eddies.However, the responses of wind stress to eddy-induced SST are weaker in the simulation than in the observations, although different magnitudes exist in different areas. Associated with weak wind responses, surface sensible heat flux responses to eddy-induced SST are underestimated slightly, while surface latent heat flux responses are overestimated because of the drier atmospheric boundary layers in the model. Both momentum mixing and pressure adjustment mechanisms play important roles in surface wind changes over oceanic fronts and eddies in the high-resolution model.展开更多
The numerical simulation of wake and flee-surface flow around ships is a complex topic that involves multiple tasks: the generation of an optimal computational grid and the development of numerical algorithms capable...The numerical simulation of wake and flee-surface flow around ships is a complex topic that involves multiple tasks: the generation of an optimal computational grid and the development of numerical algorithms capable to predict the flow field around a hull. In this paper, a numerical framework is developed aimed at high-resolution CFD simulations of turbulent, free-surface flows around ship hulls. The framework consists in the concatenation of "tools", partly available in the open-source finite volume library OpenFOAM. A novel, flexible mesh-generation algorithm is presented, capable of producing high-quality computational grids for free-surface ship hydrodynamics. The numerical frame work is used to solve some benchmark problems, providing results that are in excellent agreement with the experimental measures.展开更多
In view of the frequent occurrence of floods due to climate change, and the fact that a large calculation domain, with complex land types, is required for solving the problem of the flood simulations, this paper propo...In view of the frequent occurrence of floods due to climate change, and the fact that a large calculation domain, with complex land types, is required for solving the problem of the flood simulations, this paper proposes an optimized non-uniform grid model combined with a high-resolution model based on the graphics processing unit (GPU) acceleration to simulate the surface water flow process. For the grid division, the topographic gradient change is taken as the control variable and different optimization criteria are designed according to different land types. In the numerical model, the Godunov-type method is adopted for the spatial discretization, the TVD-MUSUL and Runge-Kutta methods are used to improve the model’s spatial and temporal calculation accuracies, and the simulation time is reduced by leveraging the GPU acceleration. The model is applied to ideal and actual case studies. The results show that the numerical model based on a non-uniform grid enjoys a good stability. In the simulation of the urban inundation, approximately 40%–50% of the urban average topographic gradient change to be covered is taken as the threshold for the non-uniform grid division, and the calculation efficiency and accuracy can be optimized. In this case, the calculation efficiency of the non-uniform grid based on the optimized parameters is 2–3 times of that of the uniform grid, and the approach can be adopted for the actual flood simulation in large-scale areas.展开更多
Glaciers in the Yarlung Zangbo Downstream Basin(YZDB)are sensitive to global climate change.The equilibrium-line altitude(ELA)is a key indicator of glacial development.Current models for simulating the meteorological ...Glaciers in the Yarlung Zangbo Downstream Basin(YZDB)are sensitive to global climate change.The equilibrium-line altitude(ELA)is a key indicator of glacial development.Current models for simulating the meteorological ELA underestimate the extent of glacial advance during the Last Glacial Maximum(LGM)in the YZDB and cannot explain the large-scale glacial extension compared with the Yarlung Zangbo Midstream Basin(YZMB).In this study,the distribution of ELA in the LGM is reconstructed using high-resolution 80-km ECHAM5 simulations and empirical relationships between temperature and precipitation.Changes in ELA between the LGM and pre-industrial era(PI)are compared.Our simulated ELA closely fits the published field data.In the YZDB,simulated LGM ELAs range from ca.3500 m to over 4900 m,representing declines of ca.300–950 m.The ECHAM5 simulations better reflect the complex topographic features than most coarse-resolution climate models,and the ELA distribution is controlled by the spatial arrangement of river valley systems and mountain ranges and their impact on precipitation.Compared with the PI era,most of the monsoon precipitation in the LGM was concentrated in the YZDB,which is the main driver of glacial extension and the differential response of the downstream and midstream basins.展开更多
In this paper, the CMA-TRAMS tropical high-resolution system was used to forecast a typical hot weather process in Guangdong, China with different horizontal resolutions and surface coverage. The results of resolution...In this paper, the CMA-TRAMS tropical high-resolution system was used to forecast a typical hot weather process in Guangdong, China with different horizontal resolutions and surface coverage. The results of resolutions of 0.02° and 0.06° were presented with the same surface coverage of the GlobeLand30 V2020, companies with the results of resolution 0.02° with the USGS global surface coverage. The results showed that, on the overall assessment the 2 km model performed better in forecasting 2 m temperature, while the 6 km model was more accurate in predicting 10 m wind speed. In the evaluation of representative stations, the 2 km model performed better in forecasting 2 m temperature and 2 m relative humidity at the coastal stations, and the 2 km model was also better in forecasting 2 m pressure at the representative stations. However, the 6 km model performed better in forecasting 10 m wind speed at the representative stations. Furthermore, the 2 km model, owing to its higher horizontal resolution, presented a more detailed stratification of various meteorological field maps, allowing for a more pronounced simulation of local meteorological element variations. And the use of the surface coverage data of the GlobeLand30 V2020 improved the forecasting of 2 m temperature, and 10 m wind speed compared to the USGS surface coverage data.展开更多
This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general...This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general circulation by implementing the Simplified Simple Biosphere (SSiB)model in a modified version of IAP/LASG global spectral general model(L9R15 AGCM). This study reveals that the SSiB model produces a better partitioning of the land surface heat and moisture fluxes and its diurnal variations,and also gives the transport of energy and water among atmosphere,vegetation and soil explicitly and realistically.Thus the coupled SSiB-AGCM runs lead to the more conspicuous improvement in the simulated circulation,precipitation,mean water vapor content and its transport.particularly in the Asian monsoon region in the real world than CTL-AGCM runs.It is also pointed out that both the implementation of land surface parameterizations and the variations in land surface into the GOALS model have greatly improved hydrological balance over continents and have a significant impact on the simulated climate. particularly over the massive continents. Improved precipitation recycling model was employed to verify the mechanisms for land surface hydrology parameterizations on hydrological cycle and precipitation climatology in AGCM. It can be argued that the recycling precipitation rate is significantly reduced,particularly in the arid and semi-arid region of the boreal summer hemisphere,coincident with remarkable reduction in evapotranspiration over the continental area.Therefore the coupled SSiB-AGCM runs reduce the bias of too much precipitation over land surface in most AGCMs,thereby bringing the simulated precipitation closer to observations in many continental regions of the world than CTL-AGCM runs.展开更多
基金The National Natural Science Foundation of China under contract No.42425606the Basic Scientific Fund for the National Public Research Institute of China(Shu-Xingbei Young Talent Program)under contract No.2023S01+1 种基金the Ocean Decade International Cooperation Center Scientific and Technological Cooperation Project under contract No.GHKJ2024005China-Korea Joint Ocean Research Center Project under contract Nos PI-20240101(China)and 20220407(Korea).
文摘In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models increase significantly with the resolution.Artificial intelligence methods have attracted increasing attention because of their high precision and fast computing speeds compared with traditional numerical model methods.The resolution-independent Fourier neural operator(FNO)presents a promising solution to the still challenging problem of high-resolution fluid flow simulations based on low-resolution data.Accordingly,we assess the potential of FNO for high-resolution fluid flow simulations using the vorticity equation as an example.We assess and compare the performance of FNO in multiple high-resolution tests varying the amounts of data and the evolution durations.When assessed with finer resolution data(even up to number of grid points with 1280×1280),the FNO model,trained at low resolution(number of grid points with 64×64)and with limited data,exhibits a stable overall error and good accuracy.Additionally,our work demonstrates that the FNO model takes less time than the traditional numerical method for high-resolution simulations.This suggests that FNO has the prospect of becoming a cost-effective and highly precise model for high-resolution simulations in the future.Moreover,FNO can make longer high-resolution predictions while training with less data by superimposing vorticity fields from previous time steps as input.A suitable initial learning rate can be set according to the frequency principle,and the time intervals of the dataset need to be adjusted according to the spatial resolution of the input when training the FNO model.Our findings can help optimize FNO for future fluid flow simulations.
基金supported by the National Basic Research and Development Project (973 program) of China (Grant No. 2015CB452805)the National Natural Science Foundation of China (Grant No. 41375068)partly supported by the National Science Foundation (Grant No. AGS-1326524)
文摘A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensification (RI) period in the northern South China Sea, and the 18-h period of weakening after landfall. The results show that the model reproduces the track, intensity, structure of the storm, and environmental circulations reasonably well. Analysis of the surface energetics under the storm indicates that the storm's intensification is closely related to the net energy gain rate (eg), defined as the difference between the energy production (PD) due to surface entropy flux and the energy dissipation (Ds) due to surface friction near the radius of maximum wind (RMW). Before and during the RI stage, the ~:g is high, indicating sufficient energy supply for the storm to intensify. However, the Sg decreases rapidly as the storm quickly intensifies, because the Ds increases more rapidly than the PD near the RMW. By the time the storm reaches its peak intensity, the Ds is about 20% larger than the PD near the RMW, leading to a local energetics deficit under the eyewall. During the mature stage, the PD and Ds can reach a balance within a radius of 86 km from the storm center (about 2.3 times the RMW). This implies that the local PD under the eyewall is not large enough to balance the Ds, and the radially inward energy transport from outside the eyewall must play an important role in maintaining the storm's intensity, as well as its intensification.
基金The first author was partly supported by the Chinese Ministry of Education,and the Japanese Ministry of Education,Science and Culture through their scholarship exchange programsthe National Natural Science Foundation of China under the Grant Nos.40275033 and 40240420564This work was also supported by the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(LAPC)of the Institute of Atmospheric Physics of the Chinese Academy of Sciences under Grant No.LAPC-KF-2003-10.
文摘This paper presents a high-resolution simulation of a remarkable polar low observed over the Sea of Japan on 21 January 1997 by using a 5-km mesh non-hydrostatic model MRI-NHM (Meteorological Research Institute Non-Hydrostatic Model). A 24-hour simulation starting from 0000 UTC 21 January 1997 successfully reproduced the observed features of the polar low such as the wrapping of western part of an initial E-W orientation vortex, the spiral-shaped bands, the cloud-free 'eye', and the warm core structure at its mature stage. The 'eye' of the simulated polar low was relatively dry, and was associated with a strong downdraft. A thermodynamic budget analysis indicates that the 'warm core' in the 'eye' region was mainly caused by the adiabatic warming associated with the downdraft. The relationship among the condensational diabatic heating, the vertical velocity, the convergence of the moisture flux, and the circulation averaged within a 50 km×50 km square area around the polar low center shows that they form a positive feedback loop, and this loop is not inconsistent with the CISK (Conditional Instability of the Second Kind) mechanism during the developing stage of the polar low.
基金supported by the PetroChina Prospective,Basic,and Strategic Technology Research Project(No.2021DJ0606).
文摘There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoirs and thin interbeds.This study proposes a novel method to constrain improving seismic resolution in the time and frequency domain.The expected wavelet spectrum is used in the frequency domain to broaden the seismic spectrum range and increase the octave.In the time domain,the Frobenius vector regularization of the Hessian matrix is used to constrain the horizontal continuity of the seismic data.It eff ectively protects the signal-to-noise ratio of seismic data while the longitudinal seismic resolution is improved.This method is applied to actual post-stack seismic data and pre-stack gathers dividedly.Without abolishing the phase characteristics of the original seismic data,the time resolution is signifi cantly improved,and the structural features are clearer.Compared with the traditional spectral simulation and deconvolution methods,the frequency distribution is more reasonable,and seismic data has higher resolution.
基金The National Key Research and Development Program of China under contract No.2017YFA0604104the National Natural Science Foundation of China under contract Nos 42176004,92058201 and 41776040the Fundamental Research Funds for the Central Universities under contract No.B220202050.
文摘Submesoscale processes in marginal seas usually have complex generating mechanisms,highly dependent on the local background flow and forcing.This numerical study investigates the spatial and seasonal differences of submesoscale activities in the upper ocean of the South China Sea(SCS)and the different dynamical regimes for sub-regions.The spatial and seasonal variations of vertical vorticity,horizontal convergence,lateral buoyancy gradient,and strain rate are analyzed to compare the submesoscale phenomenon within four sub-regions,the northern region near the Luzon Strait(R1),the middle ocean basin(R2),the western SCS(R3),and the southern SCS(R4).The results suggest that the SCS submesoscale processes are highly heterogeneous in space,with different seasonalities in each sub-region.The submesoscale activities in the northern sub-regions(R1,R2)are active in winter but weak in summer,while there appears an almost seasonal anti-phase in the western region(R3)compared to R1 and R2.Interestingly,no clear seasonality of submesoscale features is shown in the southern region(R4).Further analysis of Ertel potential vorticity reveals different generating mechanisms of submesoscale processes in different sub-regions.Correlation analyses also show the vertical extent of vertical velocity and the role of monsoon in generating submesoscale activities in the upper ocean of sub-regions.All these results suggest that the sub-regions have different regimes for submesoscale processes,e.g.,Kuroshio intrusion(R1),monsoon modulation(R2),frontal effects(R3),topography wakes(R4).
文摘Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al., 2006; Ashley and Black, 2008; Cao, 2008; Cao and Ma, 2009; Zhang et al., 2014). Due to its localized and transient nature, the initiation of convection or convective initiation remains one of the least understood aspects of convection in the scientific communi- ties, and it is a significant challenge to accurately predict the exact timing and location of convective initiation (e.g., Cai et al., 2006; Wilson and Roberts, 2006; Xue and Martin, 2006; Cao and Zhang, 2016).
文摘The IAP 2-L AGCM is modified by introducing a set of climatological surface albedo data into the model for substituting the model′s original surface albedo parameterization. The comparison between the observations and the simulation results by the modified model shows that the general features of the East Asian summer monsoon can be well reproduced by the modified IAP 2-L AGCM. Especially for the simulation of monsoon precipitation, the modified model can well reproduce not only the monthly mean features of the summer monsoon rainfall over East Asia, but also the stepwise advance and retreat of the East Asian summer monsoon rainbelt. Analysis results demonstrate that the good simulation of the monsoon rainfall is closely related to the reasonable simulation of the large scale general circulation over East Asian region, such as the western Pacific subtropical high, Asian monsoon low and the low level flows. The good performance of the modified model in the rainfall simulation shows its great potential to serve as a useful tool for the prediction of summer drought/flood events over East Asia.
文摘The IAP AGCM was used to simulate the climate of 125kyr and 115kyr before present. We analysed the results and then studied the sensitivity of the model to the changes of radiation distribution induced by orbital parameter changes. The reasonability of the results was also discussed.
基金supported by the National Key Technologies R&D Program(Grant No. 2007BAC29B03)China-UK-Swiss Adaptingto Climate Change in China Project (ACCC)-Climate Sciencethe National Natural Science Foundation of China (Grant No. 40890054)
文摘Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulating present-day precipitation shows encouraging results. The spatial distributions of both mean and extreme precipitation, especially the locations of main precipitation centers, are reproduced reasonably. The simulated annual cycle of precipitation is close to the observed. The performance of the model over eastern China is generally better than that over western China. A weakness of the model is the overestimation of precipitation over northern and western China. Analyses on the potential change in precipitation projected under the A1B scenario show that both annual mean precipitation intensity and extreme precipitation would increase significantly over southeastern China. The percentage increase in extreme precipitation is larger than that of mean precipitation. Meanwhile, decreases in mean and extreme precipitation are evident over the southern Tibetan Plateau. For precipitation days, extreme precipitation days are projected to increase over all of China. Both consecutive dry days over northern China and consecutive wet days over southern China would decrease.
基金supported by the National Basic Research and Development (973) Program of China (Grant No.2012CB955902)China Meteorological Special Project (Grant Nos.GYHY201206016 and GYHY 201406022)+1 种基金National Natural Science Foundation of China (Grant No.41125017)the Public science and technology research funds projects of ocean (Grant No.201105019-3)
文摘The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO's eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models' biases in the BSISO simulation.
基金supported by the National Key R&D Program for Developing Basic Sciences [grant numbers2016YFC1401401 and 2016YFC1401601]the National Natural Science Foundation of China [grant numbers41376026 and 41576025]
文摘Using the Community Earth System Model framework, the authors build a very-high-resolution quasi-global coupled model by coupling an eddy-resolving quasi-global ocean model with a high-resolution atmospheric model. The model is successfully run for six years under present climate conditions, and the simulations are evaluated against observational and reanalysis data.The model is capable of simulating large-scale oceanic and atmospheric circulation patterns, sea surface temperature(SST) fronts, oceanic eddy kinetic energy, and fine-scale structures of surface winds. The ocean mesoscale structure–induced air–sea interaction characteristics are explored in detail. The model can effectively reproduce positive correlations between SST and surface wind stress induced by mesoscale structures through comparison with observations. The positive correlation is particularly significant over regions with strong oceanic fronts and eddies.However, the responses of wind stress to eddy-induced SST are weaker in the simulation than in the observations, although different magnitudes exist in different areas. Associated with weak wind responses, surface sensible heat flux responses to eddy-induced SST are underestimated slightly, while surface latent heat flux responses are overestimated because of the drier atmospheric boundary layers in the model. Both momentum mixing and pressure adjustment mechanisms play important roles in surface wind changes over oceanic fronts and eddies in the high-resolution model.
文摘The numerical simulation of wake and flee-surface flow around ships is a complex topic that involves multiple tasks: the generation of an optimal computational grid and the development of numerical algorithms capable to predict the flow field around a hull. In this paper, a numerical framework is developed aimed at high-resolution CFD simulations of turbulent, free-surface flows around ship hulls. The framework consists in the concatenation of "tools", partly available in the open-source finite volume library OpenFOAM. A novel, flexible mesh-generation algorithm is presented, capable of producing high-quality computational grids for free-surface ship hydrodynamics. The numerical frame work is used to solve some benchmark problems, providing results that are in excellent agreement with the experimental measures.
基金This work was supported by the Shaanxi International Science and Technology Cooperation and Exchange Program(Grant No.2017KW-014)Projects supported by the National Natural Science Foundation of China (Grant No.51609199)the National Key Research and Development Program of China (Grant No.2016YFC0402704).
文摘In view of the frequent occurrence of floods due to climate change, and the fact that a large calculation domain, with complex land types, is required for solving the problem of the flood simulations, this paper proposes an optimized non-uniform grid model combined with a high-resolution model based on the graphics processing unit (GPU) acceleration to simulate the surface water flow process. For the grid division, the topographic gradient change is taken as the control variable and different optimization criteria are designed according to different land types. In the numerical model, the Godunov-type method is adopted for the spatial discretization, the TVD-MUSUL and Runge-Kutta methods are used to improve the model’s spatial and temporal calculation accuracies, and the simulation time is reduced by leveraging the GPU acceleration. The model is applied to ideal and actual case studies. The results show that the numerical model based on a non-uniform grid enjoys a good stability. In the simulation of the urban inundation, approximately 40%–50% of the urban average topographic gradient change to be covered is taken as the threshold for the non-uniform grid division, and the calculation efficiency and accuracy can be optimized. In this case, the calculation efficiency of the non-uniform grid based on the optimized parameters is 2–3 times of that of the uniform grid, and the approach can be adopted for the actual flood simulation in large-scale areas.
基金The Second Tibetan Plateau Scientific Expedition and Research Program(STEP),No.2019QZKK0902Key Research and Development Program of Xizang Autonomous Region,No.XZ202301ZY0039GNational Natural Science Foundation of China,No.42305178,No.91747207,No.41790434。
文摘Glaciers in the Yarlung Zangbo Downstream Basin(YZDB)are sensitive to global climate change.The equilibrium-line altitude(ELA)is a key indicator of glacial development.Current models for simulating the meteorological ELA underestimate the extent of glacial advance during the Last Glacial Maximum(LGM)in the YZDB and cannot explain the large-scale glacial extension compared with the Yarlung Zangbo Midstream Basin(YZMB).In this study,the distribution of ELA in the LGM is reconstructed using high-resolution 80-km ECHAM5 simulations and empirical relationships between temperature and precipitation.Changes in ELA between the LGM and pre-industrial era(PI)are compared.Our simulated ELA closely fits the published field data.In the YZDB,simulated LGM ELAs range from ca.3500 m to over 4900 m,representing declines of ca.300–950 m.The ECHAM5 simulations better reflect the complex topographic features than most coarse-resolution climate models,and the ELA distribution is controlled by the spatial arrangement of river valley systems and mountain ranges and their impact on precipitation.Compared with the PI era,most of the monsoon precipitation in the LGM was concentrated in the YZDB,which is the main driver of glacial extension and the differential response of the downstream and midstream basins.
文摘In this paper, the CMA-TRAMS tropical high-resolution system was used to forecast a typical hot weather process in Guangdong, China with different horizontal resolutions and surface coverage. The results of resolutions of 0.02° and 0.06° were presented with the same surface coverage of the GlobeLand30 V2020, companies with the results of resolution 0.02° with the USGS global surface coverage. The results showed that, on the overall assessment the 2 km model performed better in forecasting 2 m temperature, while the 6 km model was more accurate in predicting 10 m wind speed. In the evaluation of representative stations, the 2 km model performed better in forecasting 2 m temperature and 2 m relative humidity at the coastal stations, and the 2 km model was also better in forecasting 2 m pressure at the representative stations. However, the 6 km model performed better in forecasting 10 m wind speed at the representative stations. Furthermore, the 2 km model, owing to its higher horizontal resolution, presented a more detailed stratification of various meteorological field maps, allowing for a more pronounced simulation of local meteorological element variations. And the use of the surface coverage data of the GlobeLand30 V2020 improved the forecasting of 2 m temperature, and 10 m wind speed compared to the USGS surface coverage data.
基金Project jointly supported by the Key Project of National Basic Research"Research on the Formation Mechanism Prediction Theory of Severe ClimaticSynoptic Disasters in China"through"973"grant No.G1998040911,G1998040900 and by the National Natu
文摘This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general circulation by implementing the Simplified Simple Biosphere (SSiB)model in a modified version of IAP/LASG global spectral general model(L9R15 AGCM). This study reveals that the SSiB model produces a better partitioning of the land surface heat and moisture fluxes and its diurnal variations,and also gives the transport of energy and water among atmosphere,vegetation and soil explicitly and realistically.Thus the coupled SSiB-AGCM runs lead to the more conspicuous improvement in the simulated circulation,precipitation,mean water vapor content and its transport.particularly in the Asian monsoon region in the real world than CTL-AGCM runs.It is also pointed out that both the implementation of land surface parameterizations and the variations in land surface into the GOALS model have greatly improved hydrological balance over continents and have a significant impact on the simulated climate. particularly over the massive continents. Improved precipitation recycling model was employed to verify the mechanisms for land surface hydrology parameterizations on hydrological cycle and precipitation climatology in AGCM. It can be argued that the recycling precipitation rate is significantly reduced,particularly in the arid and semi-arid region of the boreal summer hemisphere,coincident with remarkable reduction in evapotranspiration over the continental area.Therefore the coupled SSiB-AGCM runs reduce the bias of too much precipitation over land surface in most AGCMs,thereby bringing the simulated precipitation closer to observations in many continental regions of the world than CTL-AGCM runs.