期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
COMPACT FINITE DIFFERENCE-FOURIER SPECTRAL METHOD FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 被引量:5
1
作者 熊忠民 凌国灿 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第4期296-306,共11页
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite differen... A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported. 展开更多
关键词 compact finite difference Fourier spectral method numerical simulation vortex dislocation
在线阅读 下载PDF
High accuracy compact finite difference methods and their applications
2
作者 田振夫 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期558-560,共3页
Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been... Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention. 展开更多
关键词 computational fluid dynamics CFD incompressible flow convection-diffusion equation Navier-Stokes equations compact finite difference approximation alternating direction implicit method numerical simulation.
在线阅读 下载PDF
UNIFORM ERROR BOUNDS OF A CONSERVATIVE COMPACT FINITE DIFFERENCE METHOD FOR THE QUANTUM ZAKHAROV SYSTEM IN THE SUBSONIC LIMIT REGIME
3
作者 Gengen Zhang Chunmei Su 《Journal of Computational Mathematics》 SCIE CSCD 2024年第1期289-312,共24页
In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed.... In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed.In the subsonic limit regime,i.e.,when 0<ε?1,the solution of QZS propagates rapidly oscillatory initial layers in time,and this brings significant difficulties in devising numerical algorithm and establishing their error estimates,especially as 0<ε?1.The solvability,the mass and energy conservation laws of the scheme are also discussed.Based on the cut-off technique and energy method,we rigorously analyze two independent error estimates for the well-prepared and ill-prepared initial data,respectively,which are uniform in both time and space forε∈(0,1]and optimal at the fourth order in space.Numerical results are reported to verify the error behavior. 展开更多
关键词 Quantum Zakharov system Subsonic limit compact finite difference method Uniformly accurate Error estimate
原文传递
Explicit High-Order Method to Solve Coupled Nonlinear Schrödinger Equations
4
作者 Khadijah Alamoudi Mohmmad Said Hammoudeh 《Advances in Pure Mathematics》 2021年第5期472-482,共11页
Models of the coupled nonlinear Schr<span style="white-space:nowrap;">&#246;dinger equations submit various critical physical phenomena with a typical equation for optical fibres with linear refrac... Models of the coupled nonlinear Schr<span style="white-space:nowrap;">&#246;dinger equations submit various critical physical phenomena with a typical equation for optical fibres with linear refraction. In this article, we will presuppose the Compact Finite Difference method with Runge-Kutta of order 4 (explicit) method, which is sixth-order and fourth-order in space and time respectively, to solve coupled nonlinear Schr<span style="white-space:nowrap;">&#246;dinger equations. Many methods used to solve coupled nonlinear Schr<span style="white-space:nowrap;">&#246;dinger equations are second order in time and need to use extra-technique to rise up to fourth-order as Richardson Extrapolation technique. The scheme obtained is immediately fourth-order in one step. This approach is a conditionally stable method. The conserved quantities and the exact single soliton solution indicate the competence and accuracy of the article’s suggestion schemes. Furthermore, the article discusses the two solitons interaction dynamics. 展开更多
关键词 Coupled Nonlinear Schrodinger Equations Sixth Order method Interaction of Two Solitons compact finite difference Runge-Kutta of Order 4 method
在线阅读 下载PDF
Compact implicit integration factor methods for some complex-valued nonlinear equations 被引量:1
5
作者 张荣培 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期49-53,共5页
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me... The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient. 展开更多
关键词 compact implicit integration factor method finite difference nonlinear Schrodinger equa-tion complex Ginzburg Landau equation
原文传递
Optimal Error Estimates of Compact Finite Difference Discretizations for the Schrodinger-Poisson System 被引量:1
6
作者 Yong Zhang 《Communications in Computational Physics》 SCIE 2013年第5期1357-1388,共32页
We study compact finite difference methods for the Schrodinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave functionψand external potent... We study compact finite difference methods for the Schrodinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave functionψand external potential V(x).The CrankNicolson compact finite difference method and the semi-implicit compact finite difference method are both of order O(h^(4)+τ^(2))in discrete l^(2),H^(1) and l^(∞) norms with mesh size h and time step τ.For the errors of compact finite difference approximation to the second derivative and Poisson potential are nonlocal,thus besides the standard energy method and mathematical induction method,the key technique in analysis is to estimate the nonlocal approximation errors in discrete l^(∞) and H^(1) norm by discrete maximum principle of elliptic equation and properties of some related matrix.Also some useful inequalities are established in this paper.Finally,extensive numerical results are reported to support our error estimates of the numerical methods. 展开更多
关键词 Schrodinger-Poisson system Crank-Nicolson scheme semi-implicit scheme compact finite difference method Gronwall inequality the maximum principle
原文传递
A COMPACT FOURTH-ORDER FINITE DIFFERENCE SCHEME FOR THE IMPROVED BOUSSINESQ EQUATION WITH DAMPING TERMS
7
作者 Fuqiang Lu Zhiyao Song Zhuo Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2016年第5期462-478,共17页
In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into... In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into a first-order ordinary differential system, and then, the classical Pad4 approximation is used to discretize spatial derivative in the non- linear partial differential equations. The resulting coefficient matrix for the semi-discrete scheme is tri-diagonal and can be solved efficiently. In order to maintain the same order of convergence, the classical fourth-order Runge-Kutta method is the preferred method for explicit time integration. Soliton-type solutions are used to evaluate the accuracy of the method, and various numerical experiments are designed to test the different effects of the damping terms. 展开更多
关键词 compact finite difference method hnproved Boussinesq equation Stokesdamping Hydrodynamic damping Runge-Kutta method.
原文传递
An exponential expanding meshes sequence and finite difference method adopted for two-dimensional elliptic equations
8
作者 Navnit Jha Neelesh Kumar 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2016年第2期109-125,共17页
We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms.The meth... We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms.The method will be based on a geometric grid network area and included among the most stable differencing scheme in which the nine-point spatial finite differences are implemented,thus arriving at a compact formulation.In general,a third order of accuracy has been achieved and a fourth-order truncation error in the solution values will follow as a particular case.The efficiency of using geometric mesh ratio parameter has been shown with the help of illustrations.The convergence of the scheme has been established using the matrix analysis,and irreducibility is proved with the help of strongly connected characteristics of the iteration matrix.The difference scheme has been applied to test convection diffusion equation,steady state Burger’s equation,ocean model and a semi-linear elliptic equation.The computational results confirm the theoretical order and accuracy of the method. 展开更多
关键词 Geometric mesh finite difference compact method elliptic partial differential equations convection diffusion equation Stommel ocean model
原文传递
三维非线性神经传播方程的四阶和六阶Richardson外推法
9
作者 张佳豪 邓定文 《应用数学和力学》 北大核心 2025年第6期800-808,共9页
该文对一类非线性神经传播方程建立了一类交替方向隐式(ADI)紧致差分方法.其在时间上有二阶精度,在空间上有四阶精度.运用Fourier分析法和能量法可证该方法是无条件线性稳定的.此外,对这类方法,该文提出了两类Richardson外推方法,以便... 该文对一类非线性神经传播方程建立了一类交替方向隐式(ADI)紧致差分方法.其在时间上有二阶精度,在空间上有四阶精度.运用Fourier分析法和能量法可证该方法是无条件线性稳定的.此外,对这类方法,该文提出了两类Richardson外推方法,以便分别获得时、空方向均有四阶或者六阶精度的外推解,节省了计算成本.数值结果验证了该方法的精度和有效性. 展开更多
关键词 ADI法 紧致差分法 RICHARDSON外推法 稳定性
在线阅读 下载PDF
A Compact Difference Scheme for Time-Space Fractional Nonlinear Diffusion-Wave Equations with Initial Singularity
10
作者 Emadidin Gahalla Mohmed Elmahdi Sadia Arshad Jianfei Huang 《Advances in Applied Mathematics and Mechanics》 SCIE 2024年第1期146-163,共18页
In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solutio... In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solution is considered,which often generates a singular source and increases the difficulty of numerically solving the equation.The Crank-Nicolson technique,combined with the midpoint formula and the second-order convolution quadrature formula,is used for the time discretization.To increase the spatial accuracy,a fourth-order compact difference approximation,which is constructed by two compact difference operators,is adopted for spatial discretization.Then,the unconditional stability and convergence of the proposed scheme are strictly established with superlinear convergence accuracy in time and fourth-order accuracy in space.Finally,numerical experiments are given to support our theoretical results. 展开更多
关键词 Fractional nonlinear diffusion-wave equations finite difference method fourth-order compact operator STABILITY CONVERGENCE
在线阅读 下载PDF
三维泊松方程的高精度多重网格解法 被引量:18
11
作者 葛永斌 田振夫 马红磊 《应用数学》 CSCD 北大核心 2006年第2期313-318,共6页
利用对称网格点泰勒展开式中各阶导数项明显的对称性,得到了数值求解三维泊松方程的四阶和六阶精度的紧致差分格式,其推导过程简便直接.为了克服传统迭代法在求解高维问题时计算量大、收敛速度慢的缺陷,采用了多重网格加速技术,设计了... 利用对称网格点泰勒展开式中各阶导数项明显的对称性,得到了数值求解三维泊松方程的四阶和六阶精度的紧致差分格式,其推导过程简便直接.为了克服传统迭代法在求解高维问题时计算量大、收敛速度慢的缺陷,采用了多重网格加速技术,设计了相应的多重网格算法,求解了三维泊松方程的Dirichlet边值问题.数值实验结果表明,本文所提出的高精度紧致格式达到了期望的精度并且多重网格方法的加速效果是非常显著的. 展开更多
关键词 泊松方程 有限差分法 高阶紧致格式 多重网格
在线阅读 下载PDF
二维对流扩散方程非均匀网格上的高阶紧致差分方法 被引量:11
12
作者 田芳 田振夫 《水动力学研究与进展(A辑)》 CSCD 北大核心 2008年第5期475-483,共9页
利用降维法导出了非均匀网格上二维对流扩散方程的高精度紧致差分格式.对于离散得到的代数方程组采用BiCGStab(2)迭代法求解。数值算例表明,在相同网格节点数的情况下,本文基于非均匀网格格式较均匀网格格式具有高精度,高分辨率的优点,... 利用降维法导出了非均匀网格上二维对流扩散方程的高精度紧致差分格式.对于离散得到的代数方程组采用BiCGStab(2)迭代法求解。数值算例表明,在相同网格节点数的情况下,本文基于非均匀网格格式较均匀网格格式具有高精度,高分辨率的优点,对于含边界层的对流扩散问题具有很好的适应性。 展开更多
关键词 对流扩散方程 非均匀网格 高精度紧致差分方法 边界层
在线阅读 下载PDF
非均匀网格上求解对流扩散问题的高阶紧致差分方法 被引量:13
13
作者 田芳 田振夫 《宁夏大学学报(自然科学版)》 CAS 北大核心 2009年第3期209-212,共4页
基于非均网格上函数的泰勒级数展开,推导出求解一维对流扩散问题的高阶紧致差分格式.对于离散化得到的代数方程组,采用BiCGStab(2)迭代法求解.数值实验表明,该格式对于扩散占优、对流占优及边界层问题都有很好的适应性,对于数值模拟待... 基于非均网格上函数的泰勒级数展开,推导出求解一维对流扩散问题的高阶紧致差分格式.对于离散化得到的代数方程组,采用BiCGStab(2)迭代法求解.数值实验表明,该格式对于扩散占优、对流占优及边界层问题都有很好的适应性,对于数值模拟待求物理量的大梯度变化具有很高的分辨率,计算结果明显优于传统的均匀网格上的差分格式.在具体的数值模拟中,可根据实际物理量的变化规律,选取适当的网格生成变换函数,合理地调整非均匀网格的疏密分布,从而获得比在含相同结点数的均匀网络系统中更为精确的数值结果. 展开更多
关键词 对流扩散方程 高阶紧致差分方法 非均匀网格 对流占优
在线阅读 下载PDF
求解泊松方程的紧致修正法 被引量:3
14
作者 张昆 杨茉 《水动力学研究与进展(A辑)》 CSCD 北大核心 2011年第4期422-429,共8页
将紧致格式与低阶格式结合,构造紧致格式的修正项,并将修正项加入到源项中进行求解,得到了一种基于非均分网格求解泊松方程的紧致修正法,且将该方法应用于二维和三维泊松方程的数值求解中。数值计算结果表明:紧致修正方法的精度高于经... 将紧致格式与低阶格式结合,构造紧致格式的修正项,并将修正项加入到源项中进行求解,得到了一种基于非均分网格求解泊松方程的紧致修正法,且将该方法应用于二维和三维泊松方程的数值求解中。数值计算结果表明:紧致修正方法的精度高于经典方法的精度,但四阶紧致修正方法比二阶经典方法对网格的依赖性强。 展开更多
关键词 泊松方程 非等距网格 紧致差分格式 紧致修正法
原文传递
一维定常对流扩散反应方程的高精度紧致差分格式 被引量:5
15
作者 祁应楠 武莉莉 《华中师范大学学报(自然科学版)》 CAS 北大核心 2017年第1期1-6,共6页
针对一维定常对流扩散反应方程,提出了一种四阶精度的有理型紧致差分格式,其局部截断误差为O(h4);然后通过Richardson外推技术和算子插值法将本文格式的精度提高到六阶.因为格式仅涉及到3个网格基架点,所以对于Dirichlet边值问题,由差... 针对一维定常对流扩散反应方程,提出了一种四阶精度的有理型紧致差分格式,其局部截断误差为O(h4);然后通过Richardson外推技术和算子插值法将本文格式的精度提高到六阶.因为格式仅涉及到3个网格基架点,所以对于Dirichlet边值问题,由差分格式可得三对角线性方程组,可采用追赶法进行求解.最后通过数值算例验证了本文方法的精确性和可靠性. 展开更多
关键词 对流扩散反应方程 高阶紧致格式 RICHARDSON外推 有限差分法
在线阅读 下载PDF
二维非定常不可压涡量-速度Navier-Stokes方程组的高精度紧致差分格式 被引量:4
16
作者 葛永斌 田振夫 《水动力学研究与进展(A辑)》 CSCD 北大核心 2010年第1期67-75,共9页
提出了数值求解二维非定常不可压涡量-速度变量Navier-Stokes方程组的一种高精度全隐式紧致差分格式,其空间为四阶精度,时间为二阶精度,并且是无条件稳定的。为了验证本文方法的精确性和可靠性,进行了数值实验,数值实验结果与精确解或... 提出了数值求解二维非定常不可压涡量-速度变量Navier-Stokes方程组的一种高精度全隐式紧致差分格式,其空间为四阶精度,时间为二阶精度,并且是无条件稳定的。为了验证本文方法的精确性和可靠性,进行了数值实验,数值实验结果与精确解或文献中的结果吻合得很好。 展开更多
关键词 不可压Navier-Stokes方程组 非定常 涡量-速度 高精度紧致格式 有限差分法
在线阅读 下载PDF
计算气动声学中的紧致滤波格式 被引量:1
17
作者 柳占新 黄其柏 +1 位作者 袁骥轩 胡溧 《航空学报》 EI CAS CSCD 北大核心 2009年第3期403-410,共8页
从理论上分析了数值伪波产生的原因,要消除数值伪波可用滤波方法。为了使滤波器具有理想的截断特性,引入了修正的高斯函数。通过让滤波器的频响函数与修正的高斯函数逼近,利用序列二次规划(SQP)方法优化了五对角紧致滤波格式。优化的滤... 从理论上分析了数值伪波产生的原因,要消除数值伪波可用滤波方法。为了使滤波器具有理想的截断特性,引入了修正的高斯函数。通过让滤波器的频响函数与修正的高斯函数逼近,利用序列二次规划(SQP)方法优化了五对角紧致滤波格式。优化的滤波格式提高了计算精度和效率,增强了数值稳定性,更易于实施。一维和二维算例体现了优化滤波格式的性能改进。 展开更多
关键词 紧致格式 滤波 有限差分法 序列二次规划 计算气动声学
原文传递
紧致方法对流动换热及静态分岔的模拟 被引量:2
18
作者 张昆 杨茉 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第1期109-112,共4页
发展了基于投影法的紧致方法求解流动换热问题,对顶盖驱动流和侧壁加热的方腔内自然对流换热问题进行了数值模拟。与其它传统方法相比,紧致方法能在较少的网格结点下获得精度较高的计算结果。进一步,采用所发展的紧致方法对不同工况下的... 发展了基于投影法的紧致方法求解流动换热问题,对顶盖驱动流和侧壁加热的方腔内自然对流换热问题进行了数值模拟。与其它传统方法相比,紧致方法能在较少的网格结点下获得精度较高的计算结果。进一步,采用所发展的紧致方法对不同工况下的Rayleigh-Benard对流及其静态分岔现象进行了数值模拟。数值计算结果表明当长宽比变大时,底部努塞尔数会有小幅度增加。当长宽比为8时,用所发展的紧致方法不同的初场可以得出三种不同的流场和温度场。与基于QUICK格式的SIMPLE算法相比,所发展的紧致方法可以多预测一种静态分岔现象。 展开更多
关键词 紧致差分方法 投影法 静态分岔
原文传递
求解泊松方程的紧致高阶差分方法 被引量:11
19
作者 田振夫 《西北大学学报(自然科学版)》 CAS CSCD 1996年第2期109-114,共6页
基于Hermite插值法的基本思想,提出了求解二维泊松(Poisson)方程的紧致高阶差分方法,得到了一般形式的四阶和六阶差分紧致格式。通过数值实验证明了格式的良好性态。
关键词 泊松方程 差分方法 精度 紧致格式
在线阅读 下载PDF
紧凑拉伸试样参比电位差接线点布局的优化方法 被引量:2
20
作者 薛河 苟思育 倪陈强 《电子学报》 EI CAS CSCD 北大核心 2020年第7期1396-1402,共7页
紧凑拉伸试样参比电位差接线点布局多凭经验,本文提出了一种基于遗传算法对紧促拉伸试样参比电位差接线点寻优的方法.采用有限元法对拉伸试样的电位场分析,构建遗传算法的参比电位差模型,寻求最佳参比电位差值,得到紧凑拉伸试样最佳接... 紧凑拉伸试样参比电位差接线点布局多凭经验,本文提出了一种基于遗传算法对紧促拉伸试样参比电位差接线点寻优的方法.采用有限元法对拉伸试样的电位场分析,构建遗传算法的参比电位差模型,寻求最佳参比电位差值,得到紧凑拉伸试样最佳接线点位置.结果表明,两个参比电位差接线点之间的距离对参比电位差影响较大,靠近电流输入端与拉伸试样右上端内侧区域为最佳接线点位置. 展开更多
关键词 紧凑拉伸试样 遗传算法 参比电位差 最佳接线点 有限元法 裂纹监测
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部