期刊文献+
共找到80,218篇文章
< 1 2 250 >
每页显示 20 50 100
High-Frequency Stable Wireless Amplitude Modulation System Based on a Pierce Circuit
1
作者 Huiwen Xu 《Journal of Electronic Research and Application》 2025年第5期61-70,共10页
This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cy... This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cycle,combined with a 41 MHz carrier wave produced by a passive crystal oscillator Pierce circuit.A 100% modulation index amplitude modulation is achieved through the AD835 multiplier.The modulated signal is amplified by a power amplifier circuit and transmitted wirelessly via the transmitter antenna.Upon reception,the signal undergoes two-stage highfrequency amplification before passing through a Schottky diode envelope detector.The NE5532 shaping circuit then restores the square wave.Experimental results demonstrate reliable 11-meter transmission with carrier frequency deviation<0.75% and demodulation error<1%. 展开更多
关键词 Wireless transmission Amplitude modulation Pierce circuit Low power consumption
在线阅读 下载PDF
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces 被引量:2
2
作者 Hui Li Chenhui Zhao +6 位作者 Jie Li Hang Xu Wenhui Xu Qi Tan Chunyu Song Yun Shen Jianquan Yao 《Opto-Electronic Science》 2025年第3期2-15,共14页
Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarizat... Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection. 展开更多
关键词 diatomic metasurface geometric phase complex amplitude modulation spin-selective
在线阅读 下载PDF
Bioinspired smart dual-layer hydrogels system with synchronous solar and thermal radiation modulation for energy-saving all-season temperature regulation 被引量:1
3
作者 Meng-Chen Huang Chao-Hua Xue +8 位作者 Zhongxue Bai Jun Cheng Yong-Gang Wu Chao-Qun Ma Li Wan Long Xie Hui-Di Wang Bing-Ying Liu Xiao-Jing Guo 《Journal of Energy Chemistry》 2025年第2期175-190,I0005,共17页
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management... All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons. 展开更多
关键词 Thermochromic hydrogel Self-adaptive thermal management Radiative cooling Spectral modulation ENERGY-SAVING
在线阅读 下载PDF
Ion-modulation optoelectronic neuromorphic devices:mechanisms,characteristics,and applications 被引量:1
4
作者 Xiaohan Meng Runsheng Gao +1 位作者 Xiaojian Zhu Run-Wei Li 《Journal of Semiconductors》 2025年第2期24-36,共13页
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph... The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field. 展开更多
关键词 ion migration optoelectronic modulation optoelectronic device neuromorphic computing artificial vision system
在线阅读 下载PDF
Defect Engineering with Rational Dopants Modulation for High‑Temperature Energy Harvesting in Lead‑Free Piezoceramics
5
作者 Kaibiao Xi Jianzhe Guo +2 位作者 Mupeng Zheng Mankang Zhu Yudong Hou 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期87-101,共15页
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu... High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments. 展开更多
关键词 Lead-free piezoceramic Defect engineering Dopants modulation High-temperature Piezoelectric energy harvester
在线阅读 下载PDF
Increase in the variability of terrestrial carbon uptake in response to enhanced future ENSO modulation
6
作者 Younong Li Li Dan +2 位作者 Jing Peng Qidong Yang Fuqiang Yang 《Atmospheric and Oceanic Science Letters》 2025年第1期32-38,共7页
El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation an... El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures. 展开更多
关键词 Carbon variability ENSO modulation CMIP6 models
在线阅读 下载PDF
Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution 被引量:1
7
作者 Mingxing Chen Zihe Du +8 位作者 Nian Liu Huijie Li Jing Qi Enbo Shangguan Jing Li Jiahao Cao Shujiao Yang Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 2025年第2期282-291,共10页
Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy... Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts. 展开更多
关键词 Oxygen evolution reaction ELECTROCATALYSIS Lattice oxygen mechanism High-valent metal species Cation and anion modulation
在线阅读 下载PDF
Crystallization Modulation and Holistic Passivation Enables Efficient Two‑Terminal Perovskite/CuIn(Ga)Se_(2)Tandem Solar Cells
8
作者 Cong Geng Kuanxiang Zhang +7 位作者 Changhua Wang Chung Hsien Wu Jiwen Jiang Fei Long Liyuan Han Qifeng Han Yi‑Bing Cheng Yong Peng 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期205-215,共11页
Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the ... Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances.In this paper,D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals.In addition,the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination.A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries.Meanwhile,LiF is used to create this field effect,repelling hole carriers away from the PVK and C60 interface and thus reducing recombination.As a result,a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6%(0.16 cm^(2)),one of the highest results for 2-T PVK/CIGS TSCs to our knowledge.This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells. 展开更多
关键词 PVK/CIGS TSCs Irregular rough surfaces modulating the growth PVK/C60 interface recombination
在线阅读 下载PDF
The Role of the Subnucleus Reticularis Dorsalis(SRD)in Pain Modulation:A Literature Review
9
作者 Zi-yan Zhang Jia-le Mei +6 位作者 Yi-qing Rao Ke-xing Wan Jia-jia Huang Ling-ling Yu Xiang-hong Jing Man Li Zheng-tao Lv 《Current Medical Science》 2025年第4期745-754,共10页
The subnucleus reticularis dorsalis(SRD),also known as the dorsal reticular nucleus(DRt)or dorsal medullary reticular nucleus(MdD),which resides at the caudal end of the medulla,plays a pivotal role in regulating pain... The subnucleus reticularis dorsalis(SRD),also known as the dorsal reticular nucleus(DRt)or dorsal medullary reticular nucleus(MdD),which resides at the caudal end of the medulla,plays a pivotal role in regulating pain perception.Despite extensive research efforts to unravel its mechanisms,the operational intricacies of SRD remain poorly understood.Advances in experimental methodologies such as brain imaging and chemogenetics have facilitated deeper investigations into the involvement of SRD in various pain disorders.This comprehensive review aims to analyze 36 years(1989–2024)of preclinical research highlighting the critical role of SRD in diffuse noxious inhibitory control(DNIC),also known as conditioned pain modulation(CPM)in humans,and its interconnected neural circuits.Moreover,this review explores the neural circuits related to SRD,including locus coeruleus(LC)-SRD,parabrachial nucleus(PBN)-SRD,rostroventromedial medulla(RVM)-ventrolateral medulla(VLM)-SRD,anterior cingulate cortex(ACC)-SRD,medial medullary reticular formation(mMRF)-SRD,and dorsal striatum(DS)-SRD.Their activation also plays a significant role in analgesia.The pivotal roles of neurotransmitters such asμ-opioid receptor(MOR),noradrenaline,and metabotropic glutamate receptor 7(mGluR7)in modulating SRD responsiveness to pain stimuli are also discussed,as are the influences of SRD on different pain types.This review identified promising avenues for innovative analgesic treatments by shedding light on potential therapeutic strategies targeting SRD. 展开更多
关键词 SRD DNIC Pain modulation Descending modulation pathways Neural circuits NEUROTRANSMITTERS
暂未订购
Design of Serially Concatenated Two-Level Polar Coded Modulation System with Low-Complexity
10
作者 Zhou Lin Liao Guojun +3 位作者 Xu Lei An Ran Xie Xianzhong Wang Xi 《China Communications》 2025年第1期102-110,共9页
Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat... Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%. 展开更多
关键词 bit-interleaved coded modulation high-order modulation multilevel coding polar codes
在线阅读 下载PDF
A novel logging method for detecting highly resistive formations in oil-based mud using high-frequency electrodes
11
作者 Kang-Kang Wu Lei Wang +1 位作者 Shao-Gui Deng Xue-Wen Kou 《Petroleum Science》 2025年第5期1946-1958,共13页
The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel l... The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument. 展开更多
关键词 Oil-based mud Highly-resistive high-frequency electrode Bulking electrode Depth of investigation
原文传递
Evaluation of the Effectiveness, Accuracy, Specificity, and Sensitivity of High-Frequency Ultrasound in Differentiating Benign and Malignant Breast Micronodules
12
作者 Danhong Yan Weimin Li Hongtao Duan 《Journal of Clinical and Nursing Research》 2025年第9期370-376,共7页
Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between Octob... Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between October 2022 and October 2024 were selected for high-frequency ultrasound diagnosis.The diagnostic efficacy of high-frequency ultrasound was evaluated by comparing it with the results of surgical pathology.Results:High-frequency ultrasound detected 50 benign nodules,primarily breast fibroadenomas,and 35 malignant nodules,mainly breast ductal carcinoma in situ.Based on surgical pathology results,the diagnostic accuracy of high-frequency ultrasound was 96.47%,specificity was 97.96%,and sensitivity was 94.44%.In high-frequency ultrasound diagnosis,the proportion of grade III and IV blood flow in malignant nodules was higher than that in benign nodules,while the proportion of regular shape and clear margins was lower.The proportion of microcalcifications and posterior echo attenuation was higher in malignant nodules,and the resistance index(RI)and peak blood flow velocity were lower than those in benign nodules(P<0.05).Conclusion:High-frequency ultrasound can effectively differentiate benign and malignant breast micronodules,determine specific nodule types,and exhibits high diagnostic accuracy and sensitivity.Additionally,benign and malignant nodules can be differentiated based on the grading of blood flow signals,sonographic features,and blood flow velocity,providing reasonable guidance for subsequent treatment plans. 展开更多
关键词 high-frequency ultrasound Breast micronodules Differentiating benign and malignant ACCURACY Sensitivity
暂未订购
Study on the Characteristics of High-Frequency Electromagnetic Wave Detection in Goaf Areas along Coal Seam Boreholes
13
作者 Maolin Yang 《Journal of Environmental & Earth Sciences》 2025年第7期272-284,共13页
China has a long history of coal mining,among which open-pit coal mines have a large number of small coal mine goafs underground.The distribution,shape,structure and other characteristics of goafs are isolated and dis... China has a long history of coal mining,among which open-pit coal mines have a large number of small coal mine goafs underground.The distribution,shape,structure and other characteristics of goafs are isolated and discontinuous,and there is no definite geological law to follow,which seriously threatens the safety of coal mine production and personnel life.Conventional ground geophysical methods have low accuracy in detecting goaf areas affected by mechanical interference from open-pit mines,especially for waterless goaf areas,which cannot be detected by existing methods.This article proposes the use of high-frequency electromagnetic waves for goaf detection.The feasibility of using drilling radar to detect goaf was theoretically analyzed,and a goaf detection model was established.The response characteristics of different fillers in the goaf under different frequencies of high-frequency electromagnetic waves were simulated and analyzed.In a certain open-pit mine in Inner Mongolia,100MHz high-frequency electromagnetic waves were used to detect the goaf through directional drilling on the ground.After detection,excavation verification was carried out,and the location of one goaf detected was verified.The results of engineering practice show that the application of high-frequency electromagnetic waves in goaf detection expands the detection radius of boreholes,has the advantages of high efficiency and accuracy,and has important theoretical and practical significance. 展开更多
关键词 Underground Coal Mine GOAF high-frequency Electromagnetic Wave(HFEW) BOREHOLE
在线阅读 下载PDF
A review on high-frequency electromagnetic interference induced by power electronics in new electric power systems
14
作者 Yundong Hu Xing Lei +3 位作者 Xizhou Du Ting Ye Hongning Song Hao Li 《Global Energy Interconnection》 2025年第5期804-820,共17页
New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed s... New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed switching of power converters.To address this situation,this paper offers an in-depth review of HF interference problems and challenges originating from power electronic devices.First,the root cause of HF electromagnetic interference,i.e.,the resonant response of the parasitic parameters of the system to high-speed switching transients,is analyzed,and various scenarios of HF interference in power systems are highlighted.Next,the types of HF interference are summarized,with a focus on common-mode interference in grounding systems.This paper thoroughly reviews and compares various suppression methods for conducted HF interference.Finally,the challenges involved and suggestions for addressing emerging HF interference problems from the perspective of both power electronics equipment and power systems are discussed.This review aims to offer a structured understanding of HF interference problems and their suppression techniques for researchers and practitioners. 展开更多
关键词 New power system Power electronics Switching transients high-frequency interference Common-mode interference suppression
在线阅读 下载PDF
Correction:Initiating Binary Metal Oxides Microcubes Electromagnetic Wave Absorber Toward Ultrabroad Absorption Bandwidth Through Interfacial and Defects Modulation
15
作者 Fushan Li Nannan Wu +8 位作者 Hideo Kimura Yuan Wang Ben Bin Xu Ding Wang Yifan Li Hassan Algadi Zhanhu Guo Wei Du Chuanxin Hou 《Nano-Micro Letters》 2025年第11期530-533,共4页
Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,... Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction. 展开更多
关键词 binary metal oxides ultrabroad absorption bandwidth electromagnetic wave absorber interfacial modulation defects modulation XRD microcubes
在线阅读 下载PDF
High-frequency enhanced ultrafast compressed active photography
16
作者 Yizhao Meng Yu Lu +5 位作者 Pengfei Zhang Yi Liu Fei Yin Lin Kai Qing Yang Feng Chen 《Opto-Electronic Advances》 2025年第1期32-43,共12页
Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the ra... Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the random code(Rcode)used in traditional UCI will lead to low-frequency noise covering high-frequency information due to its uneven sampling interval,which is a great challenge in the fidelity of large-frame reconstruction.Here,a high-frequency enhanced compressed active photography(H-CAP)is proposed.By uniformizing the sampling interval of R-code,H-CAP capture the ultrafast process with a random uniform sampling mode.This sampling mode makes the high-frequency sampling energy dominant,which greatly suppresses the low-frequency noise blurring caused by R-code and achieves high-frequency information of image enhanced.The superior dynamic performance and large-frame reconstruction ability of H-CAP are verified by imaging optical self-focusing effect and static object,respectively.We applied H-CAP to the spatial-temporal characterization of double-pulse induced silicon surface ablation dynamics,which is performed within 220 frames in a single-shot of 300 ps.H-CAP provides a high-fidelity imaging method for observing ultrafast unrepeatable dynamic processes with large frames. 展开更多
关键词 ultrafast compressed imaging high-frequency enhanced sampling spectral-temporal transform transient processes high-fidelity reconstruction
在线阅读 下载PDF
Effectiveness of High-Frequency Electrosurgical Knife Surgery Under Painless Digestive Endoscopy in Elderly Patients with Gastrointestinal Polyps
17
作者 Yumin Lu 《Proceedings of Anticancer Research》 2025年第1期14-20,共7页
Objective:To analyze the therapeutic effect of high-frequency electrosurgical knife surgery guided by painless digestive endoscopy(PDE)in elderly patients with gastrointestinal polyps(GP).Methods:A total of 100 elderl... Objective:To analyze the therapeutic effect of high-frequency electrosurgical knife surgery guided by painless digestive endoscopy(PDE)in elderly patients with gastrointestinal polyps(GP).Methods:A total of 100 elderly GP patients admitted between June 2021 and December 2022 were selected.Patients were randomly divided into two groups:the painless group(50 cases)underwent high-frequency electrosurgical knife surgery guided by PDE,while the conventional group(50 cases)underwent the same surgery guided by traditional digestive endoscopy(DE).The total treatment efficacy,perioperative indicators,gastrointestinal hormone levels,oxidative stress(OS)markers,and complication rates were compared between the two groups.Results:The total treatment efficacy in the painless group was higher than that in the conventional group,and perioperative indicators were superior in the painless group(P<0.05).One week after treatment,the gastrointestinal hormone levels and OS-related markers in the painless group were better than those in the conventional group(P<0.05).The complication rate in the painless group was lower than in the conventional group(P<0.05).Conclusion:High-frequency electrosurgical knife surgery guided by PDE improves the effectiveness of polyp removal in elderly GP patients and accelerates postoperative recovery.It also protects gastrointestinal function,reduces postoperative OS,and ensures higher surgical safety. 展开更多
关键词 Painless digestive endoscopy high-frequency electrosurgical knife surgery Elderly gastrointestinal polyps
暂未订购
Generalized Quadrature Spatial Modulation for STAR-RIS Aided NOMA Networks
18
作者 Guo Yonghao Dang Shuping +3 位作者 Li Jun Shang Wenli Hou Jia Huang Yu 《China Communications》 2025年第4期1-12,共12页
The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)netw... The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)networks.However,the transmission of STAR-RIS enhanced NOMA networks performance is severely limited due to the inter-user interference(IUI)on multi-user detections.To mitigate this drawback,we propose a generalized quadrature spatial modulation(GQSM)aided STAR-RIS in conjunction with the NOMA scheme,termed STARRIS-NOMA-GQSM,to improve the performance of the corresponding NGMA network.By STAR-RISNOMA-GQSM,the information bits for all users in transmission and reflection zones are transmitted via orthogonal signal domains to eliminate the IUI so as to greatly improve the system performance.The lowcomplexity detection and upper-bounded bit error rate(BER)of STAR-RIS-NOMA-GQSM are both studied to evaluate its feasibility and performance.Moreover,by further utilizing index modulation(IM),we propose an enhanced STAR-RIS-NOMA-GQSM scheme,termed E-STAR-RIS-NOMA-GQSM,to enhance the transmission rate by dynamically adjusting reflection patterns in both transmission and reflection zones.Simulation results show that the proposed original and enhanced scheme significantly outperform the conventional STAR-RIS-NOMA and also confirm the precision of the theoretical analysis of the upper-bounded BER. 展开更多
关键词 index modulation NOMA STAR-RIS
在线阅读 下载PDF
High-frequency complex permeability calculation for metallic soft magnetic particles with easy magnetization plane in non-magnetic medium
19
作者 Liangrui Tan Donglin He +5 位作者 Zhibiao Xu Guowu Wang Shengyu Yang Shaoyong Leng Ruilong Li Tao Wang 《Chinese Physics B》 2025年第11期254-261,共8页
Soft magnetic composites made from metallic magnetic particles with an easy magnetization plane(referred to as easy-plane metallic soft magnetic composites(SMC))are considered ideal materials for the next generation o... Soft magnetic composites made from metallic magnetic particles with an easy magnetization plane(referred to as easy-plane metallic soft magnetic composites(SMC))are considered ideal materials for the next generation of power electronic devices.This advantage is attributed to their ability to maintain high permeability at elevated frequencies.Despite these advantages,a definitive mathematical model that connects the high-frequency magnetic properties(e.g.,effective permeability)of easy-plane metallic SMCs to the intrinsic properties of the particles is still lacking.In this work,a theoretical calculation model for the effective permeability of easy-plane metallic SMCs was formulated.This model was derived from a skin effect-corrected Landau-Lifshitz-Gilbert(LLG)equation and integrated with effective medium theory incorporating inter-particle interaction.To validate the model,we prepared samples of easy-plane Y_(2)Co_(17)particle/PU SMCs with varying particle sizes and volume fractions.The experimental results showed a strong agreement with the calculated values.This research offers critical theoretical backing for the design and optimization of soft magnetic materials intended for high-frequency applications. 展开更多
关键词 easy-plane material high-frequency soft magnetic composites complex permeability Landau-Lifshitz-Gilbert(LLG)equation
原文传递
Multi-frequency formation mechanism and modulation strategy of self-priming enhanced submerged pulsed waterjet
20
作者 Haojie Jia Yanwei Liu +6 位作者 Weiqin Zuo Hongkai Han Ping Chang Mohammad Waqar Ali Asad Guozhong Hu Jian Miao Hani SMitri 《International Journal of Mining Science and Technology》 2025年第2期175-189,共15页
Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure throug... Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure through self-priming. However, their pressure frequency and cavitation characteristics remain unclear, resulting in an inability to fully utilize resonance and cavitation erosion to break coal and rock. In this study, high-frequency pressure testing, high-speed photography, and large eddy simulation(LES) are used to investigate the distribution of the pressure frequency band, evolution law of the cavitation cloud, and its regulation mechanism of a continuous waterjet, SOPW, and AFESOPW. The results indicated that the excitation of the plunger pump, shearing layer vortex, and bubble collapse corresponded to the three high-amplitude frequency bands of the waterjet pressure. AFESOPWs have an additional self-priming frequency that can produce a larger amplitude under a synergistic effect with the second high-amplitude frequency band. A better cavitation effect was produced after self-priming the annulus fluid, and the shedding frequency of the cavitation clouds of the three types of waterjets was linearly related to the cavitation number. The peak pressure of the waterjet and cavitation erosion effect can be improved by modulating the waterjet pressure oscillation frequency and cavitation shedding frequency. 展开更多
关键词 MULTI-FREQUENCY modulation SELF-PRIMING Submerged waterjet CAVITATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部