期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Revisiting the space-time gradient method:A time-clocking perspective, high order difference time discretization and comparison with the harmonic balance method 被引量:1
1
作者 Boqian WANG Dingxi WANG +1 位作者 Mohammad RAHMATI Xiuquan HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第11期45-58,共14页
This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspecti... This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspective. The STG method requires reordering of blade passages according to their relative clocking positions with respect to blades of an adjacent blade row. As the space-clocking is linked to an equivalent time-clocking, the passage reordering can be performed according to the alternative time-clocking. With the time-clocking perspective, unsteady flow solutions from different passages of the same blade row are mapped to flow solutions of the same passage at different time instants or phase angles. Accordingly, the time derivative of the unsteady flow equation is discretized in time directly, which is more natural than transforming the time derivative to a spatial one as with the original STG method. To improve the solution accuracy, a ninth order difference scheme has been investigated for discretizing the time derivative. To achieve a stable solution for the high order scheme, the implicit solution method of Lower-Upper Symmetric GaussSeidel/Gauss-Seidel(LU-SGS/GS) has been employed. The NASA Stage 35 and its blade-countreduced variant are used to demonstrate the validity of the time-clocking based passage reordering and the advantages of the high order difference scheme for the STG method. Results from an existing harmonic balance flow solver are also provided to contrast the two methods in terms of solution stability and computational cost. 展开更多
关键词 Harmonic balance method high order difference scheme Passage reordering Space-time gradient method Unsteady flows
原文传递
Recent advances of computational aeroacoustics 被引量:2
2
作者 Xiao-dong LI Min JIANG +3 位作者 Jun-hui GAO Da-kai LIN Li LIU Xiao-yan LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第1期131-140,共10页
Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In thi... Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In this review, the foundation and research scope of CAA are introduced firstly. A review of the early advances and applications of CAA is then briefly surveyed, focusing on two key issues, namely, high order finite difference scheme and non-reflecting boundary condition. Furthermore, the advances of CAA during the past five years are highlighted. Finally, the future prospective of CAA is briefly discussed. 展开更多
关键词 aeroacoustics computational aeroacoustics (CAA) high order finite difference scheme non-reflecting boundary condition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部