High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ...High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.展开更多
Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Alth...Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Although organic additives can enhance the antifreeze properties of electrolytes,their weak polarity diminishes ionic conductivity,and their flammability poses safety concerns,undermining the inherent advantages of aqueous systems.Herein,we present a cost-effective and highly stable Na_(2)SO_(4)additive introduced into a Zn(ClO_(4))2-based electrolyte to create an organic-free antifreeze electrolyte.Through Raman spectroscopy,in situ optical microscopy,densityfunctional theory computations,and molecular dynamics simulations,we demonstrate that Na+ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn^(2+)deposition through preferential adsorption and electrostatic interactions.As a result,the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at-40℃ with 61% depth of discharge,and the Zn||PANI cells retained an ultrahigh capacity retention of 91%even after 8000 charge/discharge cycles at-40℃.This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments.展开更多
(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperatu...(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials.展开更多
In the context of the rapid development of artificial intelligence and robotics,their application scenarios are continuously expanding to a variety of complex environments,with increasing attention being paid to the u...In the context of the rapid development of artificial intelligence and robotics,their application scenarios are continuously expanding to a variety of complex environments,with increasing attention being paid to the use of flexible sensors in lowtemperature environments.In this study,an ionic hydrogel was synthesized using acrylamide(AM),hydroxyethyl cellulose(HEC),and lithium chloride(LiCl)as composites.This hydrogel exhibits high adhesion,excellent sensitivity(gauge factor(GF)=2.84),rapid response time(100 ms),exceptional stretch ability(>1776%),high toughness(2.5 MJ/m^(3)),and the ability to maintain detectability at low temperatures(-60℃).HEC imparts reliable mechanical properties to the sensor through hydrogen bonding interactions of its hydroxyl groups.LiCl ensures that the sensor has outstanding antifreezing properties,maintains good conductivity and mechanical performance.Used for robotic attitude detection,the sensor demonstrated accurate recognition of various joint movements at both 20 and -20℃.This technology was extended to industrial operations and maintenance,where a mechanical claw was used to grasp parts at both room temperature and low temperature.A convolutional neural network deep learning algorithm was employed to identify and classify eight types of parts,achieving an impressive recognition accuracy of 98.8%.The polyacrylamide(PAM)/HEC/LiCl hydrogel sensor demonstrates the capability for wide-temperature range detection in flexible robotics,holding significant potential for future applications in human-machine interaction,tactile perception,and related fields.展开更多
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi...The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.展开更多
BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and of...BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and often the condition is prolonged,and the patients are prone to anxiety and uneasiness,which may be related to the harshness of the plateau environment,somatic discomfort due to the lack of oxygen,anxiety about the disease,and other factors.AIM To investigate the effects of cognitive behavioral therapy(CBT)on anxiety,sleep disorders,and hypoxia tolerance in patients with high-altitude respiratory diseases.METHODS A total of 2337 patients with high-altitude-related respiratory diseases treated at our hospital between November 2023 and January 2024 were selected as the study subjects.The subjects’pre-high-altitude residential altitude was approximately 1700 meters.They were divided into two groups.Both groups were given symptomatic treatment,and the control group implemented conventional nursing intervention,while the research group simultaneously conducted CBT intervention;assessed the degree of health knowledge of the two groups,and applied the Hamilton Anxiety Scale and the Pittsburgh Sleep Quality Index to assess the anxiety and sleep quality of the patients before and after the intervention,respectively.It also observed the length and efficiency of sleep,and detected the level of serum hypoxia inducible factor-1α,erythropoietin(EPO)and clinical intervention before and after intervention.EPO levels,and investigated satisfaction with the clinical intervention.RESULTS The rate of excellent health knowledge in the intervention group was 93.64%,which was higher than that in the control group(74.23%;P<0.05).Before the intervention,there was no significant difference in Hamilton Anxiety Scale and Pittsburgh Sleep Quality Index scores between the two groups(P>0.05),and after the intervention,the scores of the study group were significantly lower than those of the control group(P<0.05).There was no significant difference in sleep duration and sleep efficiency between the groups before the intervention(P>0.05),and after the intervention,the scores of the study group were significantly larger than those of the control group(P<0.05).There was no significant difference in serum hypoxia inducible factor-1αand EPO between the two groups before intervention(P>0.05),and both research groups were significantly lower than the control group after intervention(P<0.05).According to the questionnaire survey,the intervention satisfaction of the study group was 95.53%,which was higher than that of the control group(80.14%;P<0.05).CONCLUSION The CBT intervention in the treatment of patients with high-altitude-related respiratory diseases helps improve patients'health knowledge,relieve anxiety,improve sleep quality and hypoxia tolerance,and improve nursing satisfaction.展开更多
High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as not...High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area.展开更多
The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them w...The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.展开更多
High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environm...High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.展开更多
Chinese President Xi Jinping has guided China through a year of resilient growth via forward-looking reforms and innovation-driven transformation that is shaping the nation’s economic trajectory for 2026 and beyond.
The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) underg...The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.展开更多
Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electro...Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.展开更多
In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved cerami...In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved ceramic substrate,and laser sintering and microdroplet spraying processes are used to add the conductive metal on the curved substrate.The problems of gain loss,bandwidth reduction,and frequency shift caused by high temperatures are addressed by using a proper antenna design,with parasitic patches,slots,and metal resonant cavities.The antenna prototype is characterized by the curved substrates and the conductive metals for the power dividers,the patch,and the ground plane;its performance is examined up to a temperature of 600℃in a muffle furnace and compared with the results from the numerical analysis.The results show that the antenna can effectively function at 600℃and even higher temperatures.展开更多
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize...Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.展开更多
In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperat...In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperature(T_(c))of 1D superconductors is low.In this work,we theoretically investigate the possible high T_(c) superconductivity of(5,5)carbon nanotube(CNT).The pristine(5,5)CNT is a Dirac semimetal and can be modulated into a semiconductor by full hydrogenation.Interestingly,by further hole doping,it can be regulated into a metallic state with the sp3-hybridized𝜎electrons metalized,and a giant Kohn anomaly appears in the optical phonons.The two factors together enhance the electron–phonon coupling,and lead to high-T_(c) superconductivity.When the hole doping concentration of hydrogenated-(5,5)CNT is 2.5 hole/cell,the calculated T_(c) is 82.3 K,exceeding the boiling point of liquid nitrogen.Therefore,the predicted hole-doped hydrogenated-(5,5)CNT provides a new platform for 1D high-T_(c) superconductivity and may have potential applications in 1D nanodevices.展开更多
In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experime...In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.展开更多
As the global economy navigates through a complex landscape of uncertainty and shifting dynamics,the Chinese economy stands out for its remarkable resilience,inherent vitality,and steadfast commitment to a transformat...As the global economy navigates through a complex landscape of uncertainty and shifting dynamics,the Chinese economy stands out for its remarkable resilience,inherent vitality,and steadfast commitment to a transformative,high-quality development path.The latest economic indicators,strategic policy guidance from the Central Economic Work Conference,and a surge in international confidence collectively present a picture of an economy not merely recovering,but actively building its new growth engines.China is transitioning towards a more sustainable and innovation-driven model,with new quality productive forces playing an increasingly prominent role.展开更多
To advance intelligent construction,standards must come first.The Ministry of Housing and Urban-Rural Development has issued the List for Replicable Experience and Practices for Developing Intelligent Construction fou...To advance intelligent construction,standards must come first.The Ministry of Housing and Urban-Rural Development has issued the List for Replicable Experience and Practices for Developing Intelligent Construction four times successively and the Technical Guidelines for Intelligent Construction(Trial).展开更多
Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capabi...Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.展开更多
We report a theoretical investigation into superconductivity within the MAXH_(6) quaternary hydride system using first-principles calculations,where M and A denote alkali and alkaline earth elements,respectively,and X...We report a theoretical investigation into superconductivity within the MAXH_(6) quaternary hydride system using first-principles calculations,where M and A denote alkali and alkaline earth elements,respectively,and X represents transition metal elements.Systematic analysis of electronic band structures,phonon dispersions,and electron-phonon coupling reveals that substitution of MA binary metal combinations and X metal atoms can create favorable conditions for superconductivity.Mapping of superconducting critical temperatures,combined with dynamical stability analysis through phonon calculations,identifies ten superconducting candidates at ambient pressure.Among these,LiNaAgH_(6) exhibits nearly-free-electron behavior reminiscent of monovalent electron superconductors.It demonstrates exceptional superconducting properties with electron–phonon coupling λ=2.707,which yields a superconducting transition temperature T_(c) of 206.4 K using the Allen–Dynes formula.Its structural analogs MgNaPdH_(6),LiMgPdH_(6),LiMgAgH_(6),LiMgAuH_(6) all exhibit superconducting transition temperatures above 110 K.These findings advance our fundamental understanding of superconductivity in quaternary hydrides and provide guidance for rational design of new high-temperature superconducting materials.展开更多
基金supported by the Fujian Provincial Science and Technology Planning Project(No.2022HZ027006,No.2024HZ021023)National Natural Science Foundation of China(No.U22A20118).
文摘High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.
基金financially supported by the National Natural Science Foundation of China(Grant No.52377206,52307237)Natural Science Foundation of Heilongjiang Province of China(YQ2024E046)Postdoctoral Science Foundation of Heilongjiang Province of China(LBH-TZ2413,LBH-Z23198)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Although organic additives can enhance the antifreeze properties of electrolytes,their weak polarity diminishes ionic conductivity,and their flammability poses safety concerns,undermining the inherent advantages of aqueous systems.Herein,we present a cost-effective and highly stable Na_(2)SO_(4)additive introduced into a Zn(ClO_(4))2-based electrolyte to create an organic-free antifreeze electrolyte.Through Raman spectroscopy,in situ optical microscopy,densityfunctional theory computations,and molecular dynamics simulations,we demonstrate that Na+ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn^(2+)deposition through preferential adsorption and electrostatic interactions.As a result,the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at-40℃ with 61% depth of discharge,and the Zn||PANI cells retained an ultrahigh capacity retention of 91%even after 8000 charge/discharge cycles at-40℃.This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments.
基金supported by the National Natural Science Foundation of China(Nos.92166105 and 52005053)High-Tech Industry Science and Technology Innovation Leading Program of Hunan Province(No.2020GK2085)the Science and Technology Innovation Program of Hunan Province(No.2021RC3096).
文摘(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials.
基金supported by the National Natural Science Foundation of China(No.52475580)the Special Foundation of the Taishan Scholar Project(No.tsqn202211077)+3 种基金the Shandong Provincial Natural Science Foundation(No.ZR2023ME118)the Open Project of State Key Laboratory of Chemical Safety(No.SKLCS-2024020)the Fundamental Research Funds for the Central Universities(No.24CX02014A)the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China).
文摘In the context of the rapid development of artificial intelligence and robotics,their application scenarios are continuously expanding to a variety of complex environments,with increasing attention being paid to the use of flexible sensors in lowtemperature environments.In this study,an ionic hydrogel was synthesized using acrylamide(AM),hydroxyethyl cellulose(HEC),and lithium chloride(LiCl)as composites.This hydrogel exhibits high adhesion,excellent sensitivity(gauge factor(GF)=2.84),rapid response time(100 ms),exceptional stretch ability(>1776%),high toughness(2.5 MJ/m^(3)),and the ability to maintain detectability at low temperatures(-60℃).HEC imparts reliable mechanical properties to the sensor through hydrogen bonding interactions of its hydroxyl groups.LiCl ensures that the sensor has outstanding antifreezing properties,maintains good conductivity and mechanical performance.Used for robotic attitude detection,the sensor demonstrated accurate recognition of various joint movements at both 20 and -20℃.This technology was extended to industrial operations and maintenance,where a mechanical claw was used to grasp parts at both room temperature and low temperature.A convolutional neural network deep learning algorithm was employed to identify and classify eight types of parts,achieving an impressive recognition accuracy of 98.8%.The polyacrylamide(PAM)/HEC/LiCl hydrogel sensor demonstrates the capability for wide-temperature range detection in flexible robotics,holding significant potential for future applications in human-machine interaction,tactile perception,and related fields.
基金supported by the National Natural Science Foundation of China(No.52436008)the Inner Mongolia Science and Technology Projects,China(Nos.JMRHZX20210003 and 2023YFCY0009)+3 种基金the Huaneng Group Co Ltd.,China(No.HNKJ23-H50)the National Natural Science Foundation of China(No.22408044)the China Postdoctoral Science Foundation(No.2024M761877)the National Key R&D Program of China(No.SQ2024YFD2200039)。
文摘The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.
基金Supported by Army Logistics Department Health Bureau Project,No.QJGYXYJZX-012.
文摘BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and often the condition is prolonged,and the patients are prone to anxiety and uneasiness,which may be related to the harshness of the plateau environment,somatic discomfort due to the lack of oxygen,anxiety about the disease,and other factors.AIM To investigate the effects of cognitive behavioral therapy(CBT)on anxiety,sleep disorders,and hypoxia tolerance in patients with high-altitude respiratory diseases.METHODS A total of 2337 patients with high-altitude-related respiratory diseases treated at our hospital between November 2023 and January 2024 were selected as the study subjects.The subjects’pre-high-altitude residential altitude was approximately 1700 meters.They were divided into two groups.Both groups were given symptomatic treatment,and the control group implemented conventional nursing intervention,while the research group simultaneously conducted CBT intervention;assessed the degree of health knowledge of the two groups,and applied the Hamilton Anxiety Scale and the Pittsburgh Sleep Quality Index to assess the anxiety and sleep quality of the patients before and after the intervention,respectively.It also observed the length and efficiency of sleep,and detected the level of serum hypoxia inducible factor-1α,erythropoietin(EPO)and clinical intervention before and after intervention.EPO levels,and investigated satisfaction with the clinical intervention.RESULTS The rate of excellent health knowledge in the intervention group was 93.64%,which was higher than that in the control group(74.23%;P<0.05).Before the intervention,there was no significant difference in Hamilton Anxiety Scale and Pittsburgh Sleep Quality Index scores between the two groups(P>0.05),and after the intervention,the scores of the study group were significantly lower than those of the control group(P<0.05).There was no significant difference in sleep duration and sleep efficiency between the groups before the intervention(P>0.05),and after the intervention,the scores of the study group were significantly larger than those of the control group(P<0.05).There was no significant difference in serum hypoxia inducible factor-1αand EPO between the two groups before intervention(P>0.05),and both research groups were significantly lower than the control group after intervention(P<0.05).According to the questionnaire survey,the intervention satisfaction of the study group was 95.53%,which was higher than that of the control group(80.14%;P<0.05).CONCLUSION The CBT intervention in the treatment of patients with high-altitude-related respiratory diseases helps improve patients'health knowledge,relieve anxiety,improve sleep quality and hypoxia tolerance,and improve nursing satisfaction.
基金supported by National Natural Science Foundation of China(Grant No.52171032)Hebei Natural Science Foundation(Grant No.E2023501002)Fundamental Research Funds for the Central Universities(Grant No.2024GFYD003)。
文摘High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area.
文摘The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.
基金supported by the Australian Research Council(ARC)Projects(DP220101139,DP220101142,and LP240100542).
文摘High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.
文摘Chinese President Xi Jinping has guided China through a year of resilient growth via forward-looking reforms and innovation-driven transformation that is shaping the nation’s economic trajectory for 2026 and beyond.
基金supported by the National Key Research and Development Program of Chinathe National Natural Science Foundation of China (Grant Nos.2024YFA1408000,12474097,and2023YFA1406001)+2 种基金the Guangdong Provincial Quantum Science Strategic Initiative (Grant No.GDZX2201001)the Center for Computational Science and Engineering at Southern University of Science and Technology,the Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by Municipal Development and Reform Commission of Shenzhen(for J.L.Z.and Y.L.)the Chinese funding sources applied via HPSTAR。
文摘The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.
基金supported by the National Natural Science Foundation of China(No.62464010)Spring City Plan-Special Program for Young Talents(K202005007)+2 种基金Yunnan Talents Support Plan for Young Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Frontier Research Team of Kunming University 2023.
文摘Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.
基金National Natural Science Foundation of china(No.U2241205)the Natural Science Basic Research Program of Shaanxi(Nos.2022JC-33,2023-GHZD-35,and 2024JC-ZDXM-25)+1 种基金the Fundamental Research Funds for the Central Universitiesthe National 111 Project to provide fund for conducting experiments。
文摘In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved ceramic substrate,and laser sintering and microdroplet spraying processes are used to add the conductive metal on the curved substrate.The problems of gain loss,bandwidth reduction,and frequency shift caused by high temperatures are addressed by using a proper antenna design,with parasitic patches,slots,and metal resonant cavities.The antenna prototype is characterized by the curved substrates and the conductive metals for the power dividers,the patch,and the ground plane;its performance is examined up to a temperature of 600℃in a muffle furnace and compared with the results from the numerical analysis.The results show that the antenna can effectively function at 600℃and even higher temperatures.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the Fundamental Research Funds for the Central Universities(No.2024CDJXY003)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2023087)The Chongqing Technology Innovation and Application Development Project(No.2024TIAD-KPX0003).
文摘Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.
基金supported by the National Natural Science Foundation of China (Grant Nos.12074213 and 11574108)the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No.ZR2021ZD01)the Natural Science Foundation of Shandong Province (Grant No.ZR2023MA082)。
文摘In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperature(T_(c))of 1D superconductors is low.In this work,we theoretically investigate the possible high T_(c) superconductivity of(5,5)carbon nanotube(CNT).The pristine(5,5)CNT is a Dirac semimetal and can be modulated into a semiconductor by full hydrogenation.Interestingly,by further hole doping,it can be regulated into a metallic state with the sp3-hybridized𝜎electrons metalized,and a giant Kohn anomaly appears in the optical phonons.The two factors together enhance the electron–phonon coupling,and lead to high-T_(c) superconductivity.When the hole doping concentration of hydrogenated-(5,5)CNT is 2.5 hole/cell,the calculated T_(c) is 82.3 K,exceeding the boiling point of liquid nitrogen.Therefore,the predicted hole-doped hydrogenated-(5,5)CNT provides a new platform for 1D high-T_(c) superconductivity and may have potential applications in 1D nanodevices.
基金supported by the National Natural Science Foundation of China(No.52474396 and 52175284)the National Key Research and Development Program of China(Grant No.2022YFB3404201)。
文摘In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.
文摘As the global economy navigates through a complex landscape of uncertainty and shifting dynamics,the Chinese economy stands out for its remarkable resilience,inherent vitality,and steadfast commitment to a transformative,high-quality development path.The latest economic indicators,strategic policy guidance from the Central Economic Work Conference,and a surge in international confidence collectively present a picture of an economy not merely recovering,but actively building its new growth engines.China is transitioning towards a more sustainable and innovation-driven model,with new quality productive forces playing an increasingly prominent role.
文摘To advance intelligent construction,standards must come first.The Ministry of Housing and Urban-Rural Development has issued the List for Replicable Experience and Practices for Developing Intelligent Construction four times successively and the Technical Guidelines for Intelligent Construction(Trial).
基金supported by the National Natural Science Foundation of China(22209006,21935001)the Natural Science Foundation of Shandong Province(ZR2022QE009)+1 种基金Fundamental Research Funds for the Central Universities(buctrc202307)the Beijing Natural Science Foundation(Z210016).
文摘Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.
基金supported by the National Key R&D Program of China (Grant No.2022YFA1403201)the National Natural Science Foundation of China (Grant Nos.12125404,T2495231,123B2049,and 12204138)+9 种基金the Advanced MaterialsNational Science and Technology Major Project (Grant No.2024ZD0607000)the Natural Science Foundation of Jiangsu Province (Grant Nos.BK20233001 and BK20253009)the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No.2024ZB002)the China Postdoctoral Science Foundation (Grant No.2025M773331)the Fundamental and Interdisciplinary Disciplines Breakthrough Plan of the Ministry of Education of Chinathe AI&AI for Science program of Nanjing UniversityArtificial Intelligence and Quantum physics (AIQ) program of Nanjing Universitythe Fundamental Research Funds for the Central Universitiesthe Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY224165,NY220038,and NY219087)the Hua Li Talents Program of Nanjing University of Posts and Telecommunications。
文摘We report a theoretical investigation into superconductivity within the MAXH_(6) quaternary hydride system using first-principles calculations,where M and A denote alkali and alkaline earth elements,respectively,and X represents transition metal elements.Systematic analysis of electronic band structures,phonon dispersions,and electron-phonon coupling reveals that substitution of MA binary metal combinations and X metal atoms can create favorable conditions for superconductivity.Mapping of superconducting critical temperatures,combined with dynamical stability analysis through phonon calculations,identifies ten superconducting candidates at ambient pressure.Among these,LiNaAgH_(6) exhibits nearly-free-electron behavior reminiscent of monovalent electron superconductors.It demonstrates exceptional superconducting properties with electron–phonon coupling λ=2.707,which yields a superconducting transition temperature T_(c) of 206.4 K using the Allen–Dynes formula.Its structural analogs MgNaPdH_(6),LiMgPdH_(6),LiMgAgH_(6),LiMgAuH_(6) all exhibit superconducting transition temperatures above 110 K.These findings advance our fundamental understanding of superconductivity in quaternary hydrides and provide guidance for rational design of new high-temperature superconducting materials.