The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ...The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.展开更多
Steganography technology has been widely used in data transmission with secret information.However,the existing steganography has the disadvantages of low hidden information capacity,poor visual effect of cover images...Steganography technology has been widely used in data transmission with secret information.However,the existing steganography has the disadvantages of low hidden information capacity,poor visual effect of cover images,and is hard to guarantee security.To solve these problems,steganography using reversible texture synthesis based on seeded region growing and LSB is proposed.Secret information is embedded in the process of synthesizing texture image from the existing natural texture.Firstly,we refine the visual effect.Abnormality of synthetic texture cannot be fully prevented if no approach of controlling visual effect is applied in the process of generating synthetic texture.We use seeded region growing algorithm to ensure texture’s similar local appearance.Secondly,the size and capacity of image can be decreased by introducing the information segmentation,because the capacity of the secret information is proportional to the size of the synthetic texture.Thirdly,enhanced security is also a contribution in this research,because our method does not need to transmit parameters for secret information extraction.LSB is used to embed these parameters in the synthetic texture.展开更多
准确评估猪的营养需要量并实现精准营养配方,对于提高饲料资源利用效率及推动我国生猪养殖产业发展具有重要意义。本研究通过挖掘和分析已有文献数据,旨在构建基于分类算法的生长育肥猪营养需要量预测模型,并筛选出最佳模型,以探究分类...准确评估猪的营养需要量并实现精准营养配方,对于提高饲料资源利用效率及推动我国生猪养殖产业发展具有重要意义。本研究通过挖掘和分析已有文献数据,旨在构建基于分类算法的生长育肥猪营养需要量预测模型,并筛选出最佳模型,以探究分类算法在构建更科学合理的猪饲养标准中的可行性。从Web of Science数据库中检索近十年内有关“杜×长×大”猪能量和氨基酸需要量的文献,筛选出包含完整饲粮营养水平与生长性能数据的文献,整理形成初始数据集。将初始数据集中75%的数据划分为训练集,25%的数据划分为验证集,分别使用决策树(DT)、人工神经网络(ANN)和k-最近邻(KNN)3种机器学习算法构建分类模型。结果表明,基于KNN算法构建的分类模型在生长育肥猪营养需要量的预测上表现最佳[k=4,验证集上误分类率(MCR)=0.374]。利用KNN算法可成功构建适用于“杜×长×大”生长育肥猪营养需要量预测的分类模型,为建立更科学的猪饲养标准及精准饲喂技术提供了基础支撑。展开更多
Images captured outdoor usually degenerate because of the bad weather conditions,among which fog,one of the widespread phenomena,affects the video quality greatly.The physical features of fog make the video blurred an...Images captured outdoor usually degenerate because of the bad weather conditions,among which fog,one of the widespread phenomena,affects the video quality greatly.The physical features of fog make the video blurred and the visible distance shortened,seriously impairing the reliability of the video system.In order to satisfy the requirement of image processing in real-time,the normal distribution curve fitting technology is used to fit the histogram of the sky part and the region growing method is used to segment the region of sky.As for the non-sky part,a method of self-adaptive interpolation to equalize the histogram is adopted to enhance the contrast of the images.Experiment results show that the method works well and will not cause block effect.展开更多
This paper presents an approach to process raw unmanned aircraft vehicle(UAV)image-derived point clouds for automatically detecting,segmenting and regularizing buildings of complex urban landscapes.For regularizing,we...This paper presents an approach to process raw unmanned aircraft vehicle(UAV)image-derived point clouds for automatically detecting,segmenting and regularizing buildings of complex urban landscapes.For regularizing,we mean the extraction of the building footprints with precise position and details.In the first step,vegetation points were extracted using a support vector machine(SVM)classifier based on vegetation indexes calculated from color information,then the traditional hierarchical stripping classification method was applied to classify and segment individual buildings.In the second step,we first determined the building boundary points with a modified convex hull algorithm.Then,we further segmented these points such that each point was assigned to a fitting line using a line growing algorithm.Then,two mutually perpendicular directions of each individual building were determined through a W-k-means clustering algorithm which used the slop information and principal direction constraints.Eventually,the building edges were regularized to form the final building footprints.Qualitative and quantitative measures were used to evaluate the performance of the proposed approach by comparing the digitized results from ortho images.展开更多
This study attempted to accurately segment the mammographic masses and distinguish malignant from benign tumors.An adaptive region growing algorithm with hybrid assessment function combined with maximum likelihood ana...This study attempted to accurately segment the mammographic masses and distinguish malignant from benign tumors.An adaptive region growing algorithm with hybrid assessment function combined with maximum likelihood analysis and maximum gradient analysis was developed in this paper.In order to accommodate different situations of masses,the likelihood and the edge gradients of segmented masses were weighted adaptively by the use of information entropy.106 benign and 110 malignant tumors were included in this study.We found that the proposed algorithm obtained segmentation contour more accurately and delineated the tumor body as well as tumor peripheral regions covering typical mass boundaries and some spiculation patterns.Then the segmented results were evaluated by the classification accuracy.42 features including age,intensity,shape and texture were extracted from each segmented mass and support vector machine(SVM)was used as a classifier.The classification accuracy was evaluated using the area(A_(z))under the receiver operating characteristic(ROC)curve.It was found that the maximum likelihood analysis achieved an A_(z)value of 0.835,the maximum gradient analysis got an A_(z)value of 0.932 and the hybrid assessment function performed the best classification result where the value of A_(z)was 0.948.In addition,compared with traditional region growing algorithm,our proposed algorithm is more adaptive and provides a better performance for future works.展开更多
基金the National Natural Science Foundation of China(51909136)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education,Grant No.2022KDZ21Fund of National Major Water Conservancy Project Construction(0001212022CC60001)。
文摘The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.
基金This work was mainly supported by National Natural Science Foundation of China(No.61370218)Public Welfare Technology and Industry Project of Zhejiang Provincial Science Technology Department(No.2016C31081,No.LGG18F020013)。
文摘Steganography technology has been widely used in data transmission with secret information.However,the existing steganography has the disadvantages of low hidden information capacity,poor visual effect of cover images,and is hard to guarantee security.To solve these problems,steganography using reversible texture synthesis based on seeded region growing and LSB is proposed.Secret information is embedded in the process of synthesizing texture image from the existing natural texture.Firstly,we refine the visual effect.Abnormality of synthetic texture cannot be fully prevented if no approach of controlling visual effect is applied in the process of generating synthetic texture.We use seeded region growing algorithm to ensure texture’s similar local appearance.Secondly,the size and capacity of image can be decreased by introducing the information segmentation,because the capacity of the secret information is proportional to the size of the synthetic texture.Thirdly,enhanced security is also a contribution in this research,because our method does not need to transmit parameters for secret information extraction.LSB is used to embed these parameters in the synthetic texture.
文摘准确评估猪的营养需要量并实现精准营养配方,对于提高饲料资源利用效率及推动我国生猪养殖产业发展具有重要意义。本研究通过挖掘和分析已有文献数据,旨在构建基于分类算法的生长育肥猪营养需要量预测模型,并筛选出最佳模型,以探究分类算法在构建更科学合理的猪饲养标准中的可行性。从Web of Science数据库中检索近十年内有关“杜×长×大”猪能量和氨基酸需要量的文献,筛选出包含完整饲粮营养水平与生长性能数据的文献,整理形成初始数据集。将初始数据集中75%的数据划分为训练集,25%的数据划分为验证集,分别使用决策树(DT)、人工神经网络(ANN)和k-最近邻(KNN)3种机器学习算法构建分类模型。结果表明,基于KNN算法构建的分类模型在生长育肥猪营养需要量的预测上表现最佳[k=4,验证集上误分类率(MCR)=0.374]。利用KNN算法可成功构建适用于“杜×长×大”生长育肥猪营养需要量预测的分类模型,为建立更科学的猪饲养标准及精准饲喂技术提供了基础支撑。
文摘Images captured outdoor usually degenerate because of the bad weather conditions,among which fog,one of the widespread phenomena,affects the video quality greatly.The physical features of fog make the video blurred and the visible distance shortened,seriously impairing the reliability of the video system.In order to satisfy the requirement of image processing in real-time,the normal distribution curve fitting technology is used to fit the histogram of the sky part and the region growing method is used to segment the region of sky.As for the non-sky part,a method of self-adaptive interpolation to equalize the histogram is adopted to enhance the contrast of the images.Experiment results show that the method works well and will not cause block effect.
基金supported by the National Natural Science Foundation of China[grant numbers 41471341,41301430]the Young Scientists Foundation of RADI[grant numbers Y5SJ1000CX]‘135’Strategy Planning[grant numbers Y3SG1500CX]of the Institute of Remote Sensing and Digital Earth,Chinese Academy of Science。
文摘This paper presents an approach to process raw unmanned aircraft vehicle(UAV)image-derived point clouds for automatically detecting,segmenting and regularizing buildings of complex urban landscapes.For regularizing,we mean the extraction of the building footprints with precise position and details.In the first step,vegetation points were extracted using a support vector machine(SVM)classifier based on vegetation indexes calculated from color information,then the traditional hierarchical stripping classification method was applied to classify and segment individual buildings.In the second step,we first determined the building boundary points with a modified convex hull algorithm.Then,we further segmented these points such that each point was assigned to a fitting line using a line growing algorithm.Then,two mutually perpendicular directions of each individual building were determined through a W-k-means clustering algorithm which used the slop information and principal direction constraints.Eventually,the building edges were regularized to form the final building footprints.Qualitative and quantitative measures were used to evaluate the performance of the proposed approach by comparing the digitized results from ortho images.
基金This work was supported by the National Natural Science Foundation of China(Grant No.60772092).
文摘This study attempted to accurately segment the mammographic masses and distinguish malignant from benign tumors.An adaptive region growing algorithm with hybrid assessment function combined with maximum likelihood analysis and maximum gradient analysis was developed in this paper.In order to accommodate different situations of masses,the likelihood and the edge gradients of segmented masses were weighted adaptively by the use of information entropy.106 benign and 110 malignant tumors were included in this study.We found that the proposed algorithm obtained segmentation contour more accurately and delineated the tumor body as well as tumor peripheral regions covering typical mass boundaries and some spiculation patterns.Then the segmented results were evaluated by the classification accuracy.42 features including age,intensity,shape and texture were extracted from each segmented mass and support vector machine(SVM)was used as a classifier.The classification accuracy was evaluated using the area(A_(z))under the receiver operating characteristic(ROC)curve.It was found that the maximum likelihood analysis achieved an A_(z)value of 0.835,the maximum gradient analysis got an A_(z)value of 0.932 and the hybrid assessment function performed the best classification result where the value of A_(z)was 0.948.In addition,compared with traditional region growing algorithm,our proposed algorithm is more adaptive and provides a better performance for future works.